4 results on '"Fabrice Rappaport"'
Search Results
2. Kinetic properties and physiological role of the plastoquinone terminal oxidase (PTOX) in a vascular plant
- Author
-
Maryam Shahbazi, Pierre Joliot, Giovanni Finazzi, Martin Trouillard, Lucas Moyet, Marcel Kuntz, Fabrice Rappaport, Physiologie membranaire et moléculaire du chloroplaste (PMMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Molecular Physiology Department, Agriculture Biotechnology Research Institute of Iran (ABRII), Agriculture Biotechnology Research Institute of Iran, Laboratoire de physiologie cellulaire végétale (LPCV), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biosciences et de Biotechnologies de Grenoble (ex-IRTSV) (BIG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Collège de France (CdF (institution)), grant from the Labex GRAL, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Recherche Agronomique (INRA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Institut National de la Santé et de la Recherche Médicale (INSERM)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA)-Université Grenoble Alpes (UGA)
- Subjects
0106 biological sciences ,plastid terminal oxidase ,Chloroplasts ,Light ,Plastoquinone ,Blotting, Western ,Biophysics ,photosystem ,cyclic electron transfer ,Electrons ,Biology ,Photosynthesis ,01 natural sciences ,Biochemistry ,Plastid terminal oxidase ,Redox ,Thylakoids ,Fluorescence ,Solanum lycopersicun ,03 medical and health sciences ,chemistry.chemical_compound ,Chloroplast Proteins ,chloroplast ,Solanum lycopersicum ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Chlorophyll fluorescence ,030304 developmental biology ,Photosystem ,0303 health sciences ,NADPH dehydrogenase ,plastoquinone pool ,photoacclimation ,NADH dehydrogenase ,Cell Biology ,Chlororespiration ,Chloroplast ,enzyme ,Kinetics ,chemistry ,Seedlings ,Oxidoreductases ,metabolism ,chlororespiration ,Oxidation-Reduction ,010606 plant biology & botany - Abstract
International audience; The physiological role of the plastid terminal oxidase (PTOX) involved in plastoquinol oxidation in chloroplasts has been investigated in vivo in tomato leaves. Enzyme activity was assessed by non-invasive methods based on the analysis of the kinetics of chlorophyll fluorescence changes. In the dark, the maximum PTOX rate was smaller than 1 electron per second per PSII. This value was further decreased upon light acclimation, and became almost negligible upon inhibition of the photosynthetic performances by reducing the CO(2) availability. In contrast, prolonged exposure to high light resulted in an increase of the overall PTOX activity, which was paralleled by an increased protein accumulation. Under all the conditions tested the enzyme activity always remained about two orders of magnitude lower than that of electron flux through the linear photosynthetic electron pathway. Therefore, PTOX cannot have a role of a safety valve for photogenerated electrons, while it could be involved in acclimation to high light. Moreover, by playing a major role in the control of the stromal redox poise, PTOX is also capable of modulating the balance between linear and cyclic electron flow around PSI during the deactivation phase of carbon assimilation that follows a light to dark transition.
- Published
- 2012
3. Energetics in photosystem II from Thermosynechococcus elongatus with a D1 protein encoded by either the psbA1 or psbA3 gene
- Author
-
Miwa, Sugiura, Yuki, Kato, Ryouta, Takahashi, Hiroyuki, Suzuki, Tadashi, Watanabe, Takumi, Noguchi, Fabrice, Rappaport, and Alain, Boussac
- Subjects
Electron Transport ,Spectroscopy, Fourier Transform Infrared ,Photosystem II Protein Complex ,Thermodynamics ,Cyanobacteria ,Energy Metabolism - Abstract
The main cofactors involved in the function of Photosystem II (PSII) are borne by the D1 and D2 proteins. In some cyanobacteria, the D1 protein is encoded by different psbA genes. In Thermosynechococcus elongatus the amino acid sequence deduced from the psbA3 gene compared to that deduced from the psbA1 gene points a difference of 21 residues. In this work, PSII isolated from a wild type T. elongatus strain expressing PsbA1 or from a strain in which both the psbA1 and psbA2 genes have been deleted were studied by a range of spectroscopies in the absence or the presence of either a urea type herbicide, DCMU, or a phenolic type herbicide, bromoxynil. Spectro-electrochemical measurements show that the redox potential of PheoD1 is increased by 17 mV from -522 mV in PsbA1-PSII to -505 mV in PsbA3-PSII. This increase is about half that found upon the D1-Q130E single site directed mutagenesis in Synechocystis PCC 6803. This suggests that the effects of the D1-Q130E substitution are, at least partly, compensated for by some of the additional amino-acid changes associated with the PsbA3 for PsbA1 substitution. The thermoluminescence from the S2QA-* charge recombination and the C identical with N vibrational modes of bromoxynil detected in the non-heme iron FTIR difference spectra support two binding sites (or one site with two conformations) for bromoxynil in PsbA3-PSII instead of one in PsbA1-PSII which suggests differences in the QB pocket. The temperature dependences of the S2QA-* charge recombination show that the strength of the H-bond to PheoD1 is not the only functionally relevant difference between the PsbA3-PSII and PsbA1-PSII and that the environment of QA (and, as a consequence, its redox potential) is modified as well. The electron transfer rate between P680+* and YZ is found faster in PsbA3 than in PsbA1 which suggests that the redox potential of the P680/P680+* couple (and hence that of 1P680*/P680+*) is tuned as well when shifting from PsbA1 to PsbA3. In addition to D1-Q130E, the non-conservative amongst the 21 amino acid substitutions, D1-S270A and D1-S153A, are proposed to be involved in some of the observed changes.
- Published
- 2010
4. Assignment of a kinetic component to electron transfer between iron-sulfur clusters F(X) and F(A/B) of Photosystem I
- Author
-
Peter Heathcote, Stefano Santabarbara, Feifei Gu, Fabrice Rappaport, Kevin Redding, Wendy V. Fairclough, and Martin Byrdin
- Subjects
Iron-Sulfur Proteins ,Models, Molecular ,Ultraviolet Rays ,Kinetics ,Biophysics ,Electrons ,Photochemistry ,Photosystem I ,Ligands ,Biochemistry ,Absorption ,Light-harvesting complex ,Electron transfer ,Animals ,Photosystem ,chemistry.chemical_classification ,Photosystem I Protein Complex ,Chemistry ,Ligand ,Chlamydomonas ,Cell Biology ,Electron acceptor ,Electron transport chain ,Oxygen ,Models, Chemical ,Spectrophotometry ,Mutation ,Mutagenesis, Site-Directed - Abstract
We studied the kinetics of reoxidation of the phylloquinones in Chlamydomonas reinhardtii Photosystem I using site-directed mutations in the PhQ(A)-binding site and of the residues serving as the axial ligand to ec3(A) and ec3(B) chlorophylls. In wild type PS I, these kinetics are biphasic, and mutations in the binding region of PhQ(A) induced a specific slowing down of the slow component. This slowing allowed detection of a previously unobserved 180-ns phase having spectral characteristics that differ from electron transfer between phylloquinones and F(X). The new kinetic phase thus reflects a different reaction that we ascribe to oxidation of F(X)(-) by the F(A/B) FeS clusters. These absorption changes partly account for the differences between the spectra associated with the two kinetic components assigned to phylloquinone reoxidation. In the mutant in which the axial ligand to ec3(A) (PsaA-Met688) was targeted, about 25% of charge separations ended in P(700)(+)A(0)(-) charge recombination; no such recombination was detected in the B-side symmetric mutant. Despite significant changes in the amplitude of the components ascribed to phylloquinone reoxidation in the two mutants, the overall nanosecond absorption changes were similar to the wild type. This suggests that these absorption changes are similar for the two different phylloquinones and that part of the differences between the decay-associated spectra of the two components reflect a contribution from different electron acceptors, i.e. from an inter-FeS cluster electron transfer.
- Published
- 2006
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.