1. Anatomy of an iron-sulfur cluster scaffold protein: Understanding the determinants of [2Fe-2S] cluster stability on IscU.
- Author
-
Adrover M, Howes BD, Iannuzzi C, Smulevich G, and Pastore A
- Subjects
- Amino Acid Sequence, Circular Dichroism, Escherichia coli Proteins chemistry, Escherichia coli Proteins metabolism, Hydrophobic and Hydrophilic Interactions, Iron-Sulfur Proteins chemistry, Iron-Sulfur Proteins metabolism, Models, Molecular, Molecular Sequence Data, Mutant Proteins chemistry, Mutant Proteins metabolism, Protein Binding, Protein Stability, Protein Structure, Tertiary, Sequence Homology, Amino Acid, Spectrum Analysis, Raman, Escherichia coli Proteins genetics, Iron-Sulfur Proteins genetics, Mutant Proteins genetics, Mutation, Missense
- Abstract
Protein-bound iron sulfur clusters are prosthetic groups involved in several metabolic pathways. Understanding how they interact with the host protein and which factors influence their stability is therefore an important goal in biology. Here, we have addressed this question by studying the determinants of the 2Fe-2S cluster stability in the IscU/Isu protein scaffold. Through a detailed computational study based on a mixed quantum and classical mechanics approach, we predict that the simultaneous presence of two conserved residues, D39 and H105, has a conflicting role in cluster coordination which results in destabilizing cluster-loaded IscU/Isu according to a 'tug-of-war' mechanism. The effect is absent in the D39A mutant already known to host the cluster more stably. Our theoretical conclusions are directly supported by experimental data, also obtained from the H105A mutant, which has properties intermediate between the wild-type and the D39A mutant. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases., (Copyright © 2014 Elsevier B.V. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF