1. Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality
- Author
-
Marjo Palviainen, Christina Biasi, Viktor J. Bruckman, Xuan Zhou, Heidi Aaltonen, Frank Berninger, Jukka Pumpanen, Kristiina Karhu, Kajar Köster, Egle Köster, Forest Soil Science and Biogeochemistry, Ecosystem processes (INAR Forest Sciences), Department of Forest Sciences, Forest Ecology and Management, Institute for Atmospheric and Earth System Research (INAR), and Soils and climate change
- Subjects
DECOMPOSITION ,NORTHERN ,010504 meteorology & atmospheric sciences ,Soil test ,C-13 ,Chronosequence ,Microbial biomass ,Chemical fractionation ,Soil science ,Wildfire ,Permafrost ,CARBON-ISOTOPE RATIOS ,01 natural sciences ,NATURAL N-15 ABUNDANCE ,TEMPERATURE SENSITIVITY ,Environmental Chemistry ,0105 earth and related environmental sciences ,Earth-Surface Processes ,Water Science and Technology ,4112 Forestry ,Topsoil ,Soil organic matter ,Taiga ,04 agricultural and veterinary sciences ,Soil carbon ,15. Life on land ,NITROGEN ,TUNDRA ECOSYSTEMS ,MYCORRHIZAL FUNGI ,13. Climate action ,Soil water ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Environmental science ,MINERAL SOILS - Abstract
Wildfires burn approximately 1% of boreal forest yearly, being one of the most significant factors affecting soil organic matter (SOM) pools. Boreal forests are largely situated in the permafrost zone, which contains half of global soil carbon (C). Wildfires advance thawing of permafrost by burning the insulating organic layer and decreasing surface albedo, thus increasing soil temperatures. Fires also affect SOM quality through chemical and physical changes, such as the formation of resistant C compounds. The long-term post-fire effects on SOM quality, degradability and isotopic composition are not well known in permafrost forests. We studied the effect of forest fires on the proportional sizes of SOM pools with chemical fractionation (extracting with water, ethanol and acid) of soil samples (5, 30 and 50cm depths) collected from a fire chronosequence in the upland mineral soils of the Canadian permafrost zone. We also determined the C-13 and N-15 isotopic composition of soil after fire. In the topsoil horizon (5cm) recent fire areas contained a smaller fraction of labile SOM and were slightly more enriched with N-15 and C-13 than older fire areas. The SOM fraction ratios reverted towards pre-fire status with succession. Changes in SOM were less apparent deeper in the soil. Best predictors for the size of recalcitrant SOM fraction were active layer depth, vegetation biomass and soil C/N ratio, whereas microbial biomass was best predicted by the size of the recalcitrant SOM fraction. Results indicated that SOM in upland mineral soils at the permafrost surface could be mainly recalcitrant and its decomposition not particularly sensitive to changes resulting from fire.
- Published
- 2019
- Full Text
- View/download PDF