1. Short- and Long-Term Effects of X-ray Synchrotron Radiation on Cotton Paper
- Author
-
Mathieu Thoury, Sebastian Schöder, Sabrina Paris-Lacombe, Mauro Missori, Anne-Laurence Dupont, Alice Gimat, Centre de Recherche sur la Conservation (CRC ), Muséum national d'Histoire naturelle (MNHN)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut photonique d'analyse non-destructive européen des matériaux anciens (IPANEMA), and Muséum national d'Histoire naturelle (MNHN)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC)
- Subjects
Materials science ,Polymers and Plastics ,Analytical chemistry ,Synchrotron radiation ,Bioengineering ,Context (language use) ,02 engineering and technology ,Radiation ,010402 general chemistry ,01 natural sciences ,law.invention ,Biomaterials ,OXIDATIVE-DEGRADATION ,CELLULOSE DEGRADATION ,RESIDUAL CHROMOPHORES ,PHYSICAL-PROPERTIES ,GAMMA-IRRADIATION ,FLUORESCENCE ,SPECTROSCOPY ,WATER ,IDENTIFICATION ,MITIGATION ,law ,Materials Chemistry ,Irradiation ,Spectroscopy ,Chromatography, High Pressure Liquid ,[PHYS]Physics [physics] ,X-Rays ,021001 nanoscience & nanotechnology ,Synchrotron ,0104 chemical sciences ,Radiography ,Chromatography, Gel ,0210 nano-technology ,Luminescence ,Refractive index ,Synchrotrons - Abstract
International audience; X-ray analytical techniques are increasingly being used to study manuscripts and works of art on paper, whether with laboratory equipment or synchrotron sources. However, it is difficult to anticipate the impact of X-ray photons on paper- and cellulose-based artifacts, particularly due to the large variety of their constituents and degradation levels, and the subsequent material multiscale heterogeneity. In this context, this work aims at developing an analytical approach to study the modifications in paper upon synchrotron radiation (SR) X-ray radiation using analytical techniques, which are fully complementary and highly sensitive, yet not frequently used together. At the molecular scale, cellulose chain scissions and hydroxyl free radicals were measured using chromatographic separation techniques (size-exclusion chromatography-multiangle laser light scattering-differential refractive index (SEC-MALS-DRI) and reversed-phase high-performance liquid chromatography-fluorescence detector-diode array detector (RP-HPLC-FLD-DAD)), while the optical properties of paper were characterized using spectroscopy (UV luminescence and diffuse reflectance). These techniques showed different sensitivities toward the detection of changes. The modifications in the cellulosic material were monitored in real time, within a few days, and up to 2 years following the irradiation to define a lowest observed adverse effect dose (LOAED). As paper is a hygroscopic material, the impact of the humidity in the environment was studied using this approach. Three levels of moisture content in the paper, achieved by conditioning the samples and irradiating them at different relative humidities (RHs), were studied (0, 50, 80% RH). It was shown that very low moisture content accelerated molecular and optical modification
- Published
- 2020
- Full Text
- View/download PDF