1. Optimization of culture conditions to generate vascularized multi-lineage liver organoids with structural complexity and functionality.
- Author
-
Chi KY, Kim G, Kim H, Kim H, Jo S, Lee J, Lee Y, Yoon H, Cho S, Kim J, Lee JS, Yeon GB, Kim DS, Park HJ, and Kim JH
- Subjects
- Humans, Cell Culture Techniques methods, Cell Lineage, Hepatic Stellate Cells cytology, Hepatic Stellate Cells metabolism, Organoids cytology, Organoids metabolism, Liver cytology, Cell Differentiation
- Abstract
Hepatic organoids (HOs), primarily composed of hepatobiliary cells, do not represent the pathogenesis of liver diseases due to the lack of non-parenchymal cells. Multi-lineage liver organoids (mLOs) containing various cell types found in the liver offer a promising in vitro disease model. However, their structural complexity remains challenging to achieve due to the difficulty in optimizing culture conditions that meet the growth need of all component cell types. Here, we demonstrate that cystic HOs generated from hPSCs can be expanded long-term and serve as a continuous source for generating complex mLOs. Assembling cystic HOs with hPSC-derived endothelial and hepatic stellate cell-like cells under conventional HO culture conditions failed to support the development of multiple cell types within mLOs, resulting in biased differentiation towards specific cell types. In contrast, modulating the cAMP/Wnt/Hippo signaling pathways with small molecules during assembly and differentiation phases efficiently generate mLOs containing both hepatic parenchymal and non-parenchymal cells. These mLOs exhibited structural complexity and functional maturity, including vascular network formation between parenchymal lobular structures, cell polarity for bile secretion, and the capacity to respond to fibrotic stimuli. Our study underscores the importance of modulating signaling pathways to enhance mLO structural complexity for applications in modeling liver pathologies., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF