1. Construction of cellulose nanofibers/quaternized chitin/organic rectorite composites and their application as wound dressing materialsElectronic supplementary information (ESI) available. See DOI: 10.1039/c9bm00288j
- Author
-
GaoThese authors contributed equally to this paper., Huimin, Zhong, Zibiao, Xia, Haoyang, Hu, Qianchao, Ye, Qifa, Wang, Yanfeng, Chen, Lingyun, Du, Yumin, Shi, Xiaowen, and Zhang, Lina
- Abstract
Traumatic injury is a major cause of mortality, and poor wound healing affects millions of people. Thus, the development of effective wound dressings is essential for speeding up wound healing and decreasing mortality. In this study, a suspension of carboxylated brown algae cellulose nanofibers (BACNFs) with a high aspect ratio was freeze dried to prepare a sponge. The sponge showed high porosity and water absorption capacity; thus, it can absorb wound exudates when used as a wound dressing. In addition, quaternized β-chitin (QC) with antibacterial properties was intercalated into the interlayer space of the organic rectorite (OREC) viaelectrostatic interactions to obtain composite suspensions (QCRs) with improved antimicrobial activity compared to that of QC alone. Subsequently, the BACNF sponge was soaked in the QCR suspension to absorb QCRs viaelectrostatic interactions and hydrogen bonding from which cellulose nanofiber/quaternized chitin/organic rectorite composite (BACNF/QCR) sponges were constructed viafreeze-drying. The in vivoanimal tests demonstrated that the BACNF/QCR sponges rapidly induced hemostasis in a rat tail amputation test, making them superior to the traditional hemostatic materials. Furthermore, BACNFs/QCRs could substantially promote collagen synthesis and neovascularization, thereby accelerating wound healing 3 days earlier than gauze. This multi-functional biomedical material, fabricated using natural substances, shows great potential to be used for wound healing.
- Published
- 2019
- Full Text
- View/download PDF