1. α-Synuclein Overexpression Increases Dopamine D2/3 Receptor Binding and Immune Activation in a Model of Early Parkinson’s Disease
- Author
-
Kathrine Stokholm, Majken Borup Thomsen, Jenny-Ann Phan, Line K. Møller, Cecilie Bay-Richter, Søren H. Christiansen, David P. D. Woldbye, Marina Romero-Ramos, and Anne M. Landau
- Subjects
adeno-associated viral vectors ,α-synuclein ,autoradiography ,dopamine ,neuroinflammation ,synaptic vesicle glycoprotein 2A ,Biology (General) ,QH301-705.5 - Abstract
Progressive degeneration of dopaminergic neurons, immune activation, and α-synuclein pathology characterize Parkinson’s disease (PD). We previously reported that unilateral intranigral injection of recombinant adeno-associated viral (rAAV) vectors encoding wild-type human α-synuclein produced a rat model of early PD with dopamine terminal dysfunction. Here we tested the hypothesis that decreases in dopamine result in increased postsynaptic dopamine D2/D3 receptor expression, neuroinflammation, and reduced synaptic vesicle glycoprotein 2A (SV2A) density. Rats were injected with rAAV encoding α-synuclein or green fluorescent protein and subjected to non-pharmacological motor tests, before euthanization at 12 weeks post-injection. We performed: (1) in situ hybridization of nigral tyrosine hydroxylase mRNA, (2) HPLC of striatal dopamine content, and (3) autoradiography with [3H]raclopride, [3H]DTBZ, [3H]GBR12935, [3H]PK11195, and [3H]UCB-J to measure binding at D2/3 receptors, vesicular monoamine transporter 2, dopamine transporters, mitochondrial translocator protein, and SV2A, respectively. rAAV-α-synuclein induced motor asymmetry and reduced tyrosine hydroxylase mRNA and dopamine content in ipsilateral brain regions. This was paralleled by elevated ipsilateral postsynaptic dopamine D2/3 receptor expression and immune activation, with no changes to synaptic SV2A density. In conclusion, α-synuclein overexpression results in dopaminergic degeneration that induced compensatory increases in D2/3 binding and immune activation, recapitulating many of the pathological characteristics of PD.
- Published
- 2021
- Full Text
- View/download PDF