1. Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain.
- Author
-
Li YC, Gou ZX, Liu ZS, Tang YQ, Akamatsu T, and Kida K
- Subjects
- 4-Nitrophenylphosphatase genetics, Acetic Acid metabolism, Fermentation, Formates metabolism, Gene Deletion, Gene Expression, Levulinic Acids metabolism, Saccharomyces cerevisiae enzymology, Saccharomyces cerevisiae metabolism, Transaldolase genetics, Industrial Microbiology, Saccharomyces cerevisiae genetics, Xylose metabolism
- Abstract
In the industrial production of bioethanol from lignocellulosic biomass, a strain of Saccharomyces cerevisiae that can ferment xylose in the presence of inhibitors is of utmost importance. The recombinant, industrial-flocculating S. cerevisiae strain NAPX37, which can ferment xylose, was used as the parent to delete the gene encoding p-nitrophenylphosphatase (PHO13) and overexpress the gene encoding transaldolase (TAL1) to evaluate the synergistic effects of these two genes on xylose fermentation in the presence of weak acid inhibitors, including formic, acetic, or levulinic acids. TAL1 over-expression or PHO13 deletion improved xylose fermentation as well as the tolerance of NAPX37 to all three weak acids. The simultaneous deletion of PHO13 and the over-expression of TAL1 had synergistic effects and improved ethanol production and reduction of xylitol accumulation in the absence and presence of weak acid inhibitors.
- Published
- 2014
- Full Text
- View/download PDF