1. Identification of V-ATPase as a molecular sensor of SOX11-levels and potential therapeutic target for mantle cell lymphoma.
- Author
-
Emruli, Venera Kuci, Olsson, Roger, Ek, Fredrik, and Ek, Sara
- Subjects
- *
MANTLE cell lymphoma , *SOX transcription factors , *JAK-STAT pathway , *WNT signal transduction , *IMMUNOFLUORESCENCE , *SMALL interfering RNA , *GENE silencing , *FLOW cytometry , *PROTEIN metabolism , *ADENOSINE triphosphatase , *CELL lines , *CELL physiology , *CELLULAR signal transduction , *CYTOSKELETAL proteins , *GENES , *GLYCOPROTEINS , *GROWTH factors , *LYMPHOMAS , *MACROLIDE antibiotics , *MEMBRANE proteins , *PROTEINS , *RNA , *AZACITIDINE , *DOXYCYCLINE , *CHEMICAL inhibitors , *PHARMACODYNAMICS - Abstract
Background: Mantle cell lymphoma (MCL) is an aggressive disease with short median survival. Molecularly, MCL is defined by the t(11;14) translocation leading to overexpression of the CCND1 gene. However, recent data show that the neural transcription factor SOX11 is a disease defining antigen and several involved signaling pathways have been pin-pointed, among others the Wnt/β-catenin pathway that is of importance for proliferation in MCL. Therefore, we evaluated a compound library focused on the Wnt pathway with the aim of identifying Wnt-related targets that regulate growth and survival in MCL, with particular focus on SOX11-dependent growth regulation.Methods: An inducible SOX11 knock-down system was used to functionally screen a library of compounds (n = 75) targeting the Wnt signaling pathway. A functionally interesting target, vacuolar-type H(+)-ATPase (V-ATPase), was further evaluated by western blot, siRNA-mediated gene silencing, immunofluorescence, and flow cytometry.Results: We show that 15 out of 75 compounds targeting the Wnt pathway reduce proliferation in all three MCL cell lines tested. Furthermore, three substances targeting two different targets (V-ATPase and Dkk1) showed SOX11-dependent activity. Further validation analyses were focused on V-ATPase and showed that two independent V-ATPase inhibitors (bafilomycin A1 and concanamycin A) are sensitive to SOX11 levels, causing reduced anti-proliferative response in SOX11 low cells. We further show, using fluorescence imaging and flow cytometry, that V-ATPase is mainly localized to the plasma membrane in primary and MCL cell lines.Conclusions: We show that SOX11 status affect V-ATPase dependent pathways, and thus may be involved in regulating pH in intracellular and extracellular compartments. The plasma membrane localization of V-ATPase indicates that pH regulation of the immediate extracellular compartment may be of importance for receptor functionality and potentially invasiveness in vivo. [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF