1. Development and validation of a nomogram for predicting sever cancer-related fatigue in patients with cervical cancer
- Author
-
ZhiHui Gu, ChenXin Yang, Ke Zhang, and Hui Wu
- Subjects
Nomogram ,Cancer-related fatigue ,Coping styles ,Perceived Social Support ,Sense of coherence ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Objective Cancer-related fatigue (CRF) has been considered the biggest influencing factor for cancer patients after surgery. This study aimed to develop and validate a nomogram for severe cancer-related fatigue (CRF) patients with cervical cancer (CC). Methods A cross-sectional study was conducted to develop and validate a nomogram (building set = 196; validation set = 88) in the Department of Obstetrics and Gynecology of a Class III hospital in Shenyang, Liaoning Province. We adopted the questionnaire method, including the Cancer Fatigue Scale (CFS), Medical Uncertainty in Illness Scale (MUIS), Medical Coping Modes Questionnaire (MCMQ), Multidimensional Scale of Perceived Social Support (MSPSS), and Sense of Coherence-13 (SOC-13). Binary logistic regression was used to test the risk factors of CRF. The R4.1.2 software was used to develop and validate the nomogram, including Bootstrap resampling method, the ability of Area Under Curve (AUC), Concordance Index (C-Index), Hosmer Lemeshow goodness of fit test, Receiver Operating Characteristic (ROC) curve, Calibration calibration curve, and Decision Curve Analysis curve (DCA). Results The regression equation was Logit(P) = 1.276–0.947 Monthly income + 0.989 Long-term passive smoking − 0.952 Physical exercise + 1.512 Diagnosis type + 1.040 Coping style − 0.726 Perceived Social Support − 2.350 Sense of Coherence. The C-Index of the nomogram was 0.921 (95% CI: 0.877 $$ \sim $$ 0.958). The ROC curve showed the sensitivity of the nomogram was 0.821, the specificity was 0.900, and the accuracy was 0.857. AUC was 0.916 (95% CI: 0.876 $$ \sim $$ 0.957). The calibration showed that the predicted probability of the nomogram fitted well with the actual probability. The DCA curve showed when the prediction probability was greater than about 10%, the benefit of the nomogram was positive. The results in the validation group were similar. Conclusion This nomogram had good identifiability, accuracy and clinical practicality, and could be used as a prediction and evaluation tool for severe cases of clinical patients with CC.
- Published
- 2024
- Full Text
- View/download PDF