5 results
Search Results
2. A framework for exploring non-response patterns over time in health surveys.
- Author
-
Mölenberg, Famke J. M., de Vries, Chris, Burdorf, Alex, and van Lenthe, Frank J.
- Subjects
HEALTH surveys ,HEALTH behavior ,OLDER people ,SPORTS participation ,SURVEYS - Abstract
Background: Most health surveys have experienced a decline in response rates. A structured approach to evaluate whether a decreasing - and potentially more selective - response over time biased estimated trends in health behaviours is lacking. We developed a framework to explore the role of differential non-response over time. This framework was applied to a repeated cross-sectional survey in which the response rate gradually declined.Methods: We used data from a survey conducted biannually between 1995 and 2017 in the city of Rotterdam, The Netherlands. Information on the sociodemographic determinants of age, sex, and ethnicity was available for respondents and non-respondents. The main outcome measures of prevalence of sport participation and watching TV were only available for respondents. The framework consisted of four steps: 1) investigating the sociodemographic determinants of responding to the survey and the difference in response over time between sociodemographic groups; 2) estimating variation in health behaviour over time; 3) comparing weighted and unweighted prevalence estimates of health behaviour over time; and 4) comparing associations between sociodemographic determinants and health behaviour over time.Results: The overall response rate per survey declined from 47% in 1995 to 15% in 2017. The probability of responding was higher among older people, females, and those with a Western background. The response rate declined in all subgroups, and a faster decline was observed among younger persons and those with a non-Western ethnicity as compared to older persons and those with a Western ethnicity. Variation in health behaviours remained constant. Prevalence estimates and associations did not follow the changes in response over time. On the contrary, the difference in probability of participating in sport gradually decreased between males and females, while no differential change in the response rate was observed.Conclusions: Providing insights on non-response patterns over time is essential to understand whether declines in response rates may have influenced estimated trends in health behaviours. The framework outlined in this study can be used for this purpose. In our example, in spite of a major decline in response rate, there was no evidence that the risk of non-response bias increased over time. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
3. Estimating the standardized incidence ratio (SIR) with incomplete follow-up data.
- Author
-
Heiko Becher, Volker Winkler, Becher, Heiko, and Winkler, Volker
- Subjects
DISEASES ,EMIGRATION & immigration ,MORTALITY ,MIGRANT agricultural workers ,CANCER ,COMPARATIVE studies ,COMPUTER simulation ,LONGITUDINAL method ,RESEARCH methodology ,MEDICAL cooperation ,NOMADS ,RESEARCH ,TIME ,TUMORS ,EVALUATION research ,DISEASE incidence ,ACQUISITION of data ,STATISTICAL models - Abstract
Background: A standard parameter to compare the disease incidence of a cohort relative to the population is the standardized incidence ratio (SIR). For statistical inference is commonly assumed that the denominator, the expected number of cases, is fixed. If a disease registry is available, incident cases can sometimes be identified by linkage with the registry, however, registries may not contain information on migration or death from other causes. A complete follow-up with a population registry may not be possible. In that case, end-of-follow-up date and therefore, exact person-years of observation are unknown.Methods: We have developed a method to estimate the observation times and to derive the expected number of cases using population data on mortality and migration rates. We investigate the impact of the underlying assumptions with a sensitivity analysis.Results: The method provides a useful estimate of the SIR. We illustrate the method with a numerical example, a simulation study and with a study on standardized cancer incidence ratios in a cohort of migrants relative to the German population. We show that the additional variance induced by the estimation method is small, so that standard methods for inference can be applied.Conclusions: Estimation of the observation time is possible for cohort studies with incomplete follow-up. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
4. Identification of risk factors for hospital admission using multiple-failure survival models: a toolkit for researchers.
- Author
-
Westbury, Leo D., Syddall, Holly E., Simmonds, Shirley J., Cooper, Cyrus, Aihie Sayer, Avan, and Sayer, Avan Aihie
- Subjects
HOSPITAL admission & discharge ,SURVIVAL analysis (Biometry) ,MEDICAL statistics ,EPIDEMIOLOGICAL models ,COHORT analysis ,RISK assessment ,HOSPITAL care ,LONGITUDINAL method ,PATIENTS ,RESEARCH funding ,LOGISTIC regression analysis ,DISCHARGE planning ,PROPORTIONAL hazards models ,HOSPITAL mortality - Abstract
Background: The UK population is ageing; improved understanding of risk factors for hospital admission is required. Linkage of the Hertfordshire Cohort Study (HCS) with Hospital Episode Statistics (HES) data has created a multiple-failure survival dataset detailing the characteristics of 2,997 individuals at baseline (1998-2004, average age 66 years) and their hospital admissions (regarded as 'failure events') over a 10 year follow-up. Analysis of risk factors using logistic regression or time to first event Cox modelling wastes information as an individual's admissions after their first are disregarded. Sophisticated analysis techniques are established to examine risk factors for admission in such datasets but are not commonly implemented.Methods: We review analysis techniques for multiple-failure survival datasets (logistic regression; time to first event Cox modelling; and the Andersen and Gill [AG] and Prentice, Williams and Peterson Total Time [PWP-TT] multiple-failure models), outline their implementation in Stata, and compare their results in an analysis of housing tenure (a marker of socioeconomic position) as a risk factor for different types of hospital admission (any; emergency; elective; >7 days). The AG and PWP-TT models include full admissions histories in the analysis of risk factors for admission and account for within-subject correlation of failure times. The PWP-TT model is also stratified on the number of previous failure events, allowing an individual's baseline risk of admission to increase with their number of previous admissions.Results: All models yielded broadly similar results: not owner-occupying one's home was associated with increased risk of hospital admission. Estimated effect sizes were smaller from the PWP-TT model in comparison with other models owing to it having accounted for an increase in risk of admission with number of previous admissions. For example, hazard ratios [HR] from time to first event Cox models were 1.67(95 % CI: 1.36,2.04) and 1.63(95 % CI:1.36,1.95) for not owner-occupying one's home in relation to risk of emergency admission or death among women and men respectively; corresponding HRs from the PWP-TT model were 1.34(95 % CI:1.15,1.56) for women and 1.23(95 % CI:1.07,1.41) for men.Conclusion: The PWP-TT model may be implemented using routine statistical software and is recommended for the analysis of multiple-failure survival datasets which detail repeated hospital admissions among older people. [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF
5. Attrition in longitudinal randomized controlled trials: home visits make a difference.
- Author
-
Peterson, Janey C., Pirraglia, Paul A., Wells, Martin T., and Charlson, Mary E.
- Subjects
RANDOMIZED controlled trials ,CARDIOPULMONARY bypass ,ARTIFICIAL blood circulation ,MYOCARDIAL revascularization ,HEART blood-vessels - Abstract
Background: Participant attrition in longitudinal studies can introduce systematic bias, favoring participants who return for follow-up, and increase the likelihood that those with complications will be underestimated. Our aim was to examine the effectiveness of home follow-up (Home F/U) to complete the final study evaluation on potentially "lost" participants by: 1) evaluating the impact of including and excluding potentially "lost" participants (e.g., those who required Home F/U to complete the final evaluation) on the rates of study complications; 2) examining the relationship between timing and number of complications on the requirement for subsequent Home F/U; and 3) determining predictors of those who required Home F/U. Methods: We used data from a randomized controlled trial (RCT) conducted from 1991-1994 among coronary artery bypass graft surgery patients that investigated the effect of High mean arterial pressure (MAP) (intervention) vs. Low MAP (control) during cardiopulmonary bypass on 5 complications: cardiac morbidity/mortality, neurologic morbidity/mortality, all-cause mortality, neurocognitive dysfunction and functional decline. We enhanced completion of the final 6-month evaluation using Home F/U. Results: Among 248 participants, 61 (25%) required Home F/U and the remaining 187 (75%) received Routine F/U. By employing Home F/U, we detected 11 additional complications at 6 months: 1 major neurologic complication, 6 cases of neurocognitive dysfunction and 4 cases of functional decline. Follow-up of 61 additional Home F/U participants enabled us to reach statistical significance on our main trial outcome. Specifically, the High MAP group had a significantly lower rate of the Combined Trial Outcome compared to the Low MAP group, 16.1% vs. 27.4% (p=0.032). In multivariate analysis, participants who were ≥ 75 years (OR=3.23, 95% CI 1.52-6.88, p=0.002) or on baseline diuretic therapy (OR=2.44, 95% CI 1.14-5.21, p=0.02) were more likely to require Home F/U. In addition, those in the Home F/U group were more likely to have sustained 2 or more complications (p=0.05). Conclusions: Home visits are an effective approach to reduce attrition and improve accuracy of study outcome reporting. Trial results may be influenced by this method of reducing attrition. Older participants, those with greater medical burden and those who sustain multiple complications are at higher risk for attrition. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.