1. Optimal likelihood-ratio multiple testing with application to Alzheimer’s disease and questionable dementia
- Author
-
Donghwan Lee, Heejung Kim, Yu Kyeong Kim, Dong Soo Lee, Hye Jin Kang, Hyekyoung Lee, Eunkyung Kim, and Youngjo Lee
- Subjects
False discovery rate ,Epidemiology ,Multiple hypotheses ,Health Informatics ,Disease ,computer.software_genre ,Hippocampus ,Sensitivity and Specificity ,Alzheimer Disease ,Fluorodeoxyglucose F18 ,Voxel ,Statistics ,medicine ,Humans ,Dementia ,Computer Simulation ,Questionable dementia ,Independence (probability theory) ,Likelihood Functions ,Brain ,Reproducibility of Results ,nutritional and metabolic diseases ,medicine.disease ,Frontal Lobe ,nervous system diseases ,Positron-Emission Tomography ,Multiple comparisons problem ,Psychology ,Neuroscience ,computer ,Research Article - Abstract
Background: Controlling the false discovery rate is important when testing multiple hypotheses. To enhance the detection capability of a false discovery rate control test, we applied the likelihood ratio-based multiple testing method in neuroimage data and compared the performance with the existing methods. Methods: We analysed the performance of the likelihood ratio-based false discovery rate method using simulation data generated under independent assumption, and positron emission tomography data of Alzheimer's disease and questionable dementia. We investigated how well the method detects extensive hypometabolic regions and compared the results to those of the conventional Benjamini Hochberg-false discovery rate method. Results: Our findings show that the likelihood ratio-based false discovery rate method can control the false discovery rate, giving the smallest false non-discovery rate (for a one-sided test) or the smallest expected number of false assignments (for a two-sided test). Even though we assumed independence among voxels, the likelihood ratio-based false discovery rate method detected more extensive hypometabolic regions in 22 patients with Alzheimer's disease, as compared to the 44 normal controls, than did the Benjamini Hochberg-false discovery rate method. The contingency and distribution patterns were consistent with those of previous studies. In 24 questionable dementia patients, the proposed likelihood ratio-based false discovery rate method was able to detect hypometabolism in the medial temporal region. Conclusions: This study showed that the proposed likelihood ratio-based false discovery rate method efficiently identifies extensive hypometabolic regions owing to its increased detection capability and ability to control the false discovery rate.
- Published
- 2015
- Full Text
- View/download PDF