1. Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae
- Author
-
Sophie Goulitquer, Andrés Ritter, Juan A. Correa, Thierry Tonon, Catherine Boyen, Simon M. Dittami, Philippe Potin, Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (UC), Végétaux marins et biomolécules, Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-GOEMAR-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Departamento de Ecologia, Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile, Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile-Departamento de Ecología, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Santiago, Chile, Center of applied ecology & sustainability (CAPES), Facultad de ciencias biologicas [Santiago], Pontificia Universidad Católica de Chile (UC)-Pontificia Universidad Católica de Chile (UC), Laboratoire de Biologie Intégrative des Modèles Marins (LBI2M), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Défense des algues, Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Station biologique de Roscoff [Roscoff] (SBR), MetaboMER, Université Pierre et Marie Curie - Paris 6 (UPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Station biologique de Roscoff [Roscoff] (SBR)
- Subjects
MESH: Signal Transduction ,MESH: Algal Proteins ,MESH: Amino Acids ,Acclimatization ,Molecular Networks (q-bio.MN) ,[SDV]Life Sciences [q-bio] ,Primary metabolism ,Plant Science ,medicine.disease_cause ,MESH: Down-Regulation ,MESH: Least-Squares Analysis ,MESH: Up-Regulation ,Cluster Analysis ,Quantitative Biology - Molecular Networks ,Amino Acids ,Photosynthesis ,MESH: Metabolomics ,MESH: Phylogeny ,MESH: Stress, Physiological ,Chromatography, High Pressure Liquid ,Phylogeny ,MESH: Photosynthesis ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,Abiotic component ,Copper stress response ,MESH: Oxidative Stress ,Ectocarpus siliculosus ,Fatty Acids ,Discriminant Analysis ,MESH: Phaeophyta ,Up-Regulation ,MESH: Fatty Acids ,Cell biology ,MESH: Copper ,Heavy metal ,ABC transporters ,Metabolome ,Metabolic Networks and Pathways ,MESH: Metabolome ,Research Article ,Signal Transduction ,MESH: Oxylipins ,Brown algae ,Down-Regulation ,MESH: Acclimatization ,Biology ,Phaeophyta ,Gas Chromatography-Mass Spectrometry ,MESH: Gene Expression Profiling ,Metabolomics ,Stress, Physiological ,Botany ,medicine ,Humans ,Quantitative Biology - Genomics ,Oxylipins ,14. Life underwater ,Least-Squares Analysis ,MESH: Chromatography, High Pressure Liquid ,Genomics (q-bio.GN) ,MESH: Humans ,Abiotic stress ,Gene Expression Profiling ,MESH: Transcriptome ,Algal Proteins ,MESH: Discriminant Analysis ,Oxylipin ,biology.organism_classification ,MESH: Cluster Analysis ,MESH: Gas Chromatography-Mass Spectrometry ,Oxidative Stress ,Multicellular organism ,MESH: Metabolic Networks and Pathways ,FOS: Biological sciences ,Transcriptome ,Copper ,Oxidative stress - Abstract
International audience; Background: Brown algae are sessile macro-organisms of great ecological relevance in coastal ecosystems. They evolved independently from land plants and other multicellular lineages, and therefore hold several original ontogenic and metabolic features. Most brown algae grow along the coastal zone where they face frequent environmental changes, including exposure to toxic levels of heavy metals such as copper (Cu). Results: We carried out large-scale transcriptomic and metabolomic analyses to decipher the short-term acclimation of the brown algal model E. siliculosus to Cu stress, and compared these data to results known for other abiotic stressors. This comparison demonstrates that Cu induces oxidative stress in E. siliculosus as illustrated by the transcriptomic overlap between Cu and H 2 O 2 treatments. The common response to Cu and H 2 O 2 consisted in the activation of the oxylipin and the repression of inositol signaling pathways, together with the regulation of genes coding for several transcription-associated proteins. Concomitantly, Cu stress specifically activated a set of genes coding for orthologs of ABC transporters, a P 1B-type ATPase, ROS detoxification systems such as a vanadium-dependent bromoperoxidase, and induced an increase of free fatty acid contents. Finally we observed, as a common abiotic stress mechanism, the activation of autophagic processes on one hand and the repression of genes involved in nitrogen assimilation on the other hand. Conclusions: Comparisons with data from green plants indicate that some processes involved in Cu and oxidative stress response are conserved across these two distant lineages. At the same time the high number of yet uncharacterized brown alga-specific genes induced in response to copper stress underlines the potential to discover new components and molecular interactions unique to these organisms. Of particular interest for future research is the potential cross-talk between reactive oxygen species (ROS)-, myo-inositol-, and oxylipin signaling.
- Published
- 2014