The scenario of paediatric acute myeloid leukaemia (AML), particularly non-Down syndrome acute megakaryoblastic leukaemia (non-DS-AMKL), has been recently revolutionized by the advent of large-scale, genomic sequencing technologies. In this changing landscape, a significantly relevant discovery has been represented by the identification of the CBFA2T3-GLIS2 fusion gene, which is the result of a cryptic inversion of chromosome 16. It is the most frequent chimeric oncogene identified to date in non-DS-AMKL, although it seems not to be exclusively restricted to the French-American-British M7 subgroup. The CBFA2T3-GLIS2 fusion gene characterizes a subtype of leukaemia that is specific to paediatrics, having never been identified in adults. It characterizes an extremely aggressive leukaemia, as the presence of this fusion is associated with a grim outcome in almost all of the case series reported, with overall survival rates ranging between 15% and 30%. Although the molecular basis that underlies this leukaemia subtype is still far from being completely elucidated, unique functional properties induced by CBFA2T3-GLIS2 in the leukaemogenesis driving process have been recently identified. We here review the peculiarities of CBFA2T3-GLIS2-positive AML, describing its intriguing clinical and biological behaviour and providing some challenging targeting opportunities., (© 2018 The Authors British Journal of Haematology published by British Society for Haematology and John Wiley & Sons Ltd.)