1. A cafeteria diet triggers intestinal inflammation and oxidative stress in obese rats
- Author
-
Anna Ardévol, Montserrat Pinent, Ximena Terra, Mayte Blay, Katherine Gil-Cardoso, and Iris Ginés
- Subjects
0301 basic medicine ,medicine.medical_specialty ,Medicine (miscellaneous) ,030209 endocrinology & metabolism ,Inflammation ,Ileum ,Biology ,Weight Gain ,medicine.disease_cause ,Proinflammatory cytokine ,03 medical and health sciences ,0302 clinical medicine ,Occludin ,Internal medicine ,Claudin-1 ,medicine ,Animals ,Obesity ,Rats, Wistar ,Peroxidase ,Nutrition and Dietetics ,Intestinal permeability ,Leptin receptor ,Tumor Necrosis Factor-alpha ,Leptin ,Feeding Behavior ,medicine.disease ,Diet ,Rats, Zucker ,Oxidative Stress ,030104 developmental biology ,Endocrinology ,medicine.anatomical_structure ,Myeloperoxidase ,Zonula Occludens-1 Protein ,biology.protein ,Receptors, Leptin ,Female ,medicine.symptom ,Reactive Oxygen Species ,Oxidative stress - Abstract
The gastrointestinal alterations associated with the consumption of an obesogenic diet, such as inflammation, permeability impairment and oxidative stress, have been poorly explored in both diet-induced obesity (DIO) and genetic obesity. The aim of the present study was to examine the impact of an obesogenic diet on the gut health status of DIO rats in comparison with the Zucker (fa/fa) rat leptin receptor-deficient model of genetic obesity over time. For this purpose, female Wistar rats (n 48) were administered a standard or a cafeteria diet (CAF diet) for 12, 14·5 or 17 weeks and were compared with fa/fa Zucker rats fed a standard diet for 10 weeks. Morphometric variables, plasma biochemical parameters, myeloperoxidase (MPO) activity and reactive oxygen species (ROS) levels in the ileum were assessed, as well as the expressions of proinflammatory genes (TNF-α and inducible nitric oxide synthase (iNOS)) and intestinal permeability genes (zonula occludens-1, claudin-1 and occludin). Both the nutritional model and the genetic obesity model showed increased body weight and metabolic alterations at the final time point. An increase in intestinal ROS production and MPO activity was observed in the gastrointestinal tracts of rats fed a CAF diet but not in the genetic obesity model. TNF-α was overexpressed in the ileum of both CAF diet and fa/fa groups, and ileal inflammation was associated with the degree of obesity and metabolic alterations. Interestingly, the 17-week CAF group and the fa/fa rats exhibited alterations in the expressions of permeability genes. Relevantly, in the hyperlipidic refined sugar diet model of obesity, the responses to chronic energy overload led to time-dependent increases in gut inflammation and oxidative stress.
- Published
- 2017
- Full Text
- View/download PDF