1. The SK3/K(Ca)2.3 potassium channel is a new cellular target for edelfosine
- Author
-
Potier-Cartereau, Marie, Chantôme, Aurélie, Joulin, Virginie, Girault, Alban, Roger, Sébastien, Besson, Pierre, Jourdan, Marie-Lise, Leguennec, Jean-Yves, Bougnoux, Philippe, Vandier, Christophe, Nutrition, croissance et cancer (U 1069) (N2C), Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM), Génomes et cancer (GC (FRE2939)), Université Paris-Sud - Paris 11 (UP11)-Institut Gustave Roussy (IGR)-Centre National de la Recherche Scientifique (CNRS), Vandier, Christophe, and Université de Tours-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
MESH: Cell Line, Tumor ,Small-Conductance Calcium-Activated Potassium Channels ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Antineoplastic Agents ,Breast Neoplasms ,MESH: Small-Conductance Calcium-Activated Potassium Channels ,Membrane Potentials ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,MESH: Endopeptidase K ,Cell Movement ,Cell Line, Tumor ,MESH: Molecular Targeted Therapy ,MESH: Membrane Potentials ,Humans ,Molecular Targeted Therapy ,MESH: Cell Movement ,MESH: Humans ,Cell Membrane ,Phospholipid Ethers ,Epithelial Cells ,Research Papers ,HEK293 Cells ,Apamin ,MESH: Cell Migration Assays ,MESH: Epithelial Cells ,MESH: HEK293 Cells ,MESH: Calcium ,MESH: Antineoplastic Agents ,Calcium ,Female ,Endopeptidase K ,Cell Migration Assays ,MESH: Female ,MESH: Apamin ,MESH: Breast Neoplasms ,MESH: Phospholipid Ethers ,MESH: Cell Membrane - Abstract
International audience; BACKGROUND AND PURPOSE: The 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphocholine (edelfosine) is an ether-linked phospholipid with promising anti-cancer properties but some side effects that preclude its full clinical therapeutic exploitation. We hypothesized that this lipid could interact with plasma membrane ion channels and modulate their function. EXPERIMENTAL APPROACH: Using cell migration-proliferation assays, patch clamp, spectrofluorimetry and ¹²⁵I-Apamin binding experiments, we studied the effects of edelfosine on the migration of breast cancer MDA-MB-435s cells, mediated by the small conductance Ca²(+) -activated K(+) channel, SK3/K(Ca)2.3. KEY RESULTS: Edelfosine (1 µM) caused plasma membrane depolarization by substantially inhibiting activity of SK3/K(Ca)2.3 channels, which we had previously demonstrated to play an important role in cancer cell migration. Edelfosine did not inhibit ¹²⁵I-Apamin binding to this SK(Ca) channel; rather, it reduced the calcium sensitivity of SK3/K(Ca)2.3 channel and dramatically decreased intracellular Ca²(+) concentration, probably by insertion in the plasma membrane, as suggested by proteinase K experiments. Edelfosine reduced cell migration to the same extent as known SK(Ca) channel blockers. In contrast, K+ channel openers prevented edelfosine-induced anti-migratory effects. SK3 protein knockdown decreased cell migration and totally abolished the effect of edelfosine on MDA-MB-435s cell migration. In contrast, transient expression of SK3/K(Ca)2.3 protein in a SK3/K(Ca)2.3-deficient cell line increased cell migration and made these cells responsive to edelfosine. CONCLUSIONS AND IMPLICATIONS: Our data clearly establish edelfosine as an inhibitor of cancer cell migration by acting on SK3/K(Ca)2.3 channels and provide insights into the future development of a new class of migration-targeted, anti-cancer agents.
- Published
- 2010
- Full Text
- View/download PDF