1. Understanding Penetration Attenuation of Permeable Concrete: A Hybrid Artificial Intelligence Technique Based on Particle Swarm Optimization
- Author
-
Fei Zhu, Xiangping Wu, Yijun Lu, and Jiandong Huang
- Subjects
permeable concrete ,PSO ,RF ,water permeability ,hybrid artificial intelligence techniques ,Building construction ,TH1-9745 - Abstract
Permeable concrete is a type of porous concrete with the special function of water permeability, but the permeability of permeable concrete will decrease gradually due to the clogging behavior arising from the surrounding environment. To reliably characterize the clogging behavior of permeable concrete, particle swarm optimization (PSO) and random forest (RF) hybrid artificial intelligence techniques were developed in this study to predict the permeability coefficient of permeable concrete and optimize the aggregate mix ratio of permeable concrete. Firstly, a reliable database was collected and established to characterize the input and output variables for the machine learning. Then, PSO and 10-fold cross-validation were used to optimize the hyperparameters of the RF model using the training and testing datasets. Finally, the accuracy of the developed model was verified by comparing the predicted value with the actual value of the permeability coefficients (R = 0.978 and RMSE = 1.3638 for the training dataset; R = 0.9734 and RMSE = 2.3246 for the testing dataset). The proposed model can provide reliable predictions of the clogging behavior that permeable concrete may face and the trend of its development.
- Published
- 2024
- Full Text
- View/download PDF