1. Dispersive shock waves propagating in the cubic-quintic derivative nonlinear Schrodinger equation
- Author
-
Kengne, E., Lakhssassi, A., Nguyen-Ba, T., and Vaillancourt, R.
- Subjects
Wave propagation -- Research ,Shock waves -- Properties ,Quantum theory -- Research ,Equations -- Research ,Power lines -- Mechanical properties -- Maintenance and repair ,Physics - Abstract
The propagation of a dispersive shock wave is studied in a quintic-derivative nonlinear Schrodinger (Q-DNLS) equation, which may describe, Por example, the wave propagation on a discrete electrical transmission line. II is shown that a physical system described by a Q-DNLS equation without a dissipative term may support the propagation of shock waves. The influence of the derivative nonlinearity terms on the shock is analyzed. Using the round exact shock solutions of the Q-DNLS equation as the initial input signal, we investigate numerically the spatiotemporal stability of the shock signal in the network. PACS Nos: 42.65.Tg, 42.25.Bs, 84.40.Az, 02.60.Cb Nous etudions la propagation d'une onde de choc dispersive a l'aide d'une equation differentielle quintique non lineaire de Schrodinger (equation Q-DNLS), qui peut decrire, par exemple. la propagation d'onde sur une ligne de transmission electrique discrete. Nous montrons qu'un systeme physique decrit par une equation Q-DNLS sans terme dissipatif peut permettre la propagation d'onde de choc. Nous etudions l'influence des termes non lineaires en derivee sur l'onde de choc. Utilisant comme signal de depart, la solution exacte pour l'onde de choc obtenue de l'equation Q-DNLS, nous etudions la stabilite spatiotemporelle du signal de choc dans la ligne. [Traduit par la Redaction], 1. Introduction Since the pioneering works by Hirota and Suzuky [l] on electrical transmission lines simulating the Toda lattice, a growing interest has been devoted to the use of the [...]
- Published
- 2010
- Full Text
- View/download PDF