1. Autophagy inhibition cooperates with erlotinib to induce glioblastoma cell death.
- Author
-
Eimer S, Belaud-Rotureau MA, Airiau K, Jeanneteau M, Laharanne E, Véron N, Vital A, Loiseau H, Merlio JP, and Belloc F
- Subjects
- Apoptosis drug effects, Apoptosis Regulatory Proteins metabolism, Bcl-2-Like Protein 11, Caspases metabolism, Cell Line, Tumor, ErbB Receptors antagonists & inhibitors, Erlotinib Hydrochloride, Glioblastoma ultrastructure, HeLa Cells, Humans, Membrane Proteins metabolism, Mitochondria metabolism, Proto-Oncogene Proteins metabolism, Signal Transduction drug effects, Antineoplastic Agents pharmacology, Autophagy drug effects, Glioblastoma pathology, Protein Kinase Inhibitors pharmacology, Quinazolines pharmacology
- Abstract
Gliomas are the most common malignant primary brain tumors in adults. The median survival never exceeds 12 months, owing to inherent resistance to both radio and chemotherapies. Epidermal Growth Factor Receptor (EGFR) is amplified, overexpressed, and/or mutated in glioblastomas (GBM), making it a rational for therapy. Erlotinib, an EGFR kinase inhibitor is strongly associated with clinical response in several cancers. Inhibition of cell proliferation and induction of apoptosis by erlotinib were investigated in U87-MG and DBTRG-05MG, two human glioblastoma cell lines. The expression of several apoptosis-related proteins was investigated in these cell lines and in tumoral tissue from glioblastomas. Both cell lines expressed wild-type EGFR but were deficient for PTEN. Erlotinib induced a marked accumulation of the BIM protein, but the activation of caspase-3 machinery was missing, regardless of the decrease in XIAP. Moreover, in U87-MG, erlotinib promoted accumulation of αB-crystallin a small heat shock protein capable to impair caspase activation. DBTRG-05MG was found deficient for procaspase 3 and constitutively overexpressed αB-crystallin. Similarly, deficiencies in PTEN and procaspase 3 were constantly found in samples from glioblastoma samples, while αB-crystallin expression was inconsistent. In cell lines, high concentrations of erlotinib induced cell death through a caspase independent process and an autophagic process was evidenced in U87-MG. Inhibition of autophagy induced a marked increase in the death-inducing activity of erlotinib. These results confirm that glioblastoma cell lines exhibit several anti-apoptotic mechanisms, and underline that EGFR targeted therapy must be associated to other inhibitors to achieve an antitumoral effect.
- Published
- 2011
- Full Text
- View/download PDF