1. Unbalanced germ-line expression of hMLH1 and hMSH2 alleles in hereditary nonpolyposis colorectal cancer.
- Author
-
Curia MC, Palmirotta R, Aceto G, Messerini L, Verì MC, Crognale S, Valanzano R, Ficari F, Fracasso P, Stigliano V, Tonelli F, Casale V, Guadagni F, Battista P, Mariani-Costantini R, and Cama A
- Subjects
- Adaptor Proteins, Signal Transducing, Alleles, Carrier Proteins, Colorectal Neoplasms, Hereditary Nonpolyposis metabolism, DNA Mutational Analysis, Genetic Heterogeneity, Genetic Markers, Genetic Predisposition to Disease, Humans, Lymphocytes metabolism, Microsatellite Repeats, MutL Protein Homolog 1, MutS Homolog 2 Protein, Neoplasm Proteins genetics, Nuclear Proteins, Point Mutation, Polymerase Chain Reaction, Polymorphism, Single-Stranded Conformational, Proto-Oncogene Proteins genetics, RNA, Messenger biosynthesis, RNA, Neoplasm biosynthesis, Sequence Deletion, Transcription, Genetic, Colorectal Neoplasms, Hereditary Nonpolyposis genetics, DNA Repair genetics, DNA-Binding Proteins, Gene Expression Regulation, Neoplastic, Neoplasm Proteins biosynthesis, Proto-Oncogene Proteins biosynthesis
- Abstract
We analyzed the hMLH1 and hMSH2 genes in 30 unrelated hereditary nonpolyposis colorectal cancer (HNPCC) patients using mutational and immunohistochemical analyses combined whenever possible with primer extension assays, designed to estimate hMLH1 and hMSH2 transcript expression in peripheral blood lymphocytes. Single-strand conformational polymorphism screening and PCR-direct sequencing revealed seven hMLH1 and five hMSH2 sequence variants in 14 unrelated HNPCC patients, including three definite pathogenic mutations, four amino acid substitutions of uncertain pathogenic significance, and five polymorphisms. Immunohistochemistry indicated the lack of either hMLH1 or hMSH2 protein expression in tumors from 13 patients, and the absence of both hMLH1 and hMSH2 immunostaining was observed in the tumor from one additional case. The lack of hMLH1 or hMSH2 immunostaining was associated with the presence of microsatellite instability in the corresponding tumor and was also observed in tumors from patients negative for pathogenic mutations by mutational screening. There was a marked unbalance in the allelic expression of either hMLH1 or hMSH2 transcripts in three of eight unrelated HNPCC patients that could be analyzed, although a less marked unbalance was detected in two additional patients. Tumors from patients with germ-line unbalance in hMLH1 or hMSH2 transcript expression did not express the corresponding mismatch repair protein and displayed microsatellite instability. Our results indicate that constitutional alterations in hMLH1 and hMSH2 transcript expression may represent genetic markers for HNPCC carrier status also in cases in which mutational analysis did not detect a definite pathogenic variant. This suggests that transcript deregulation may represent a relevant mode of germ-line inactivation for mismatch repair genes.
- Published
- 1999