1. Abstract B68: Spatial and temporal conditions for Smarcb1 deletion determines mouse AT/RT (atypical teratoid/rhabdoid tumor) subtype
- Author
-
Olivier Delattre, Amaury Leruste, Pascale Varlet, Volodia Dangouloff-Ros, Franck Bourdeaut, Mamy Andrianteranagna, Gaëlle Pierron, Paul Fréneaux, Céline Chauvin, Kevin Beccaria, Arnault Tauziède-Espariat, Christelle Dufour, Maria Jesus-Lobon-Iglesias, Joshua J. Waterfall, Didier Surdez, Christine Bourneix, Zhi-Yan Han, and Julien Masliah-Planchon
- Subjects
Cancer Research ,Cancer ,Biology ,medicine.disease ,Pediatric cancer ,Phenotype ,Neural stem cell ,Oncology ,Conditional gene knockout ,Atypical teratoid rhabdoid tumor ,medicine ,Cancer research ,Progenitor cell ,SMARCB1 - Abstract
The cell(s) of origin of AT/RTs remain(s) unknown. We previously developed a mouse model consisting of tamoxifen inducible system in a Smarcb1Flox/Flox;Rosa26-CreERT2 background. We obtained two molecular subgroups of intracranial tumors, one with neuronal and the other with non-neuronal features, consistent with the diversity observed in human AT/RTs. To investigate the potential cell(s) of origin of these various AT/RTs, we first explored whether different time points of Smarcb1 inactivation correlated with anatomic location and/or molecular subgroups. We observed that the neuronal group, primarily developing from the subventricular zone and the spinal cord, was almost exclusively obtained with the earliest inactivation time points (E6-E7). In contrast, the non-neuronal group emerged upon Smarcb1 inactivation at any time point (E6-E10) and showed intracranial but extra-parenchymal/meningeal origins. High-resolution analysis of anatomic distribution of 55 human AT/RT and molecular subgroups is in progress. In order to more specifically identify the cell(s) of origin for the neuronal group, we next generated developmental stage-specific conditional knockout mice carrying Smarcb1 inactivation by restricting Cre expression with promoters characteristic for various neural stem cells/progenitors. While Smarcb1Flox/Flox;Atoh1CreERT2 showed ataxia but failed to give rise to any tumor at any embryonal time point, Smarcb1Flox/Flox;Ascl1CreERT2 did not show any phenotype. Targeting Nestin-expressing cells led to tumors with morphologic rhabdoid features; these tumors again showed molecular diversity as observed in human AT/RTs. In conclusion, we show that deletion of Smarcb1 determines mouse AT/RT subtypes depending on spatial and temporal factors. Our new mouse models not only give insight into the cell(s) of origin, but also provide interesting preclinical models of AT/RTs. Citation Format: Zhi-Yan Han, Mamy Andrianteranagna, Maria Jesus-Lobon-Iglesias, Arnault Tauziède-Espariat, Kevin Beccaria, Paul Fréneaux, Joshua J. Waterfall, Julien Masliah-Planchon, Christine Bourneix, Gaelle Pierron, Amaury Leruste, Céline Chauvin, Didier Surdez, Pascale Varlet, Christelle Dufour, Olivier Delattre, Volodia Dangouloff-Ros, Franck Bourdeaut. Spatial and temporal conditions for Smarcb1 deletion determines mouse AT/RT (atypical teratoid/rhabdoid tumor) subtype [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr B68.
- Published
- 2020
- Full Text
- View/download PDF