1. Abstract 1201: ALK amplification and rearrangements are recurrent targetable events in congenital and adult glioblastoma
- Author
-
Anne-Florence Blandin, Ross Giglio, Maya Srikanth Graham, Guadalupe Garcia, Seth Malinowski, Jared K. Woods, Shakti Ramkissoon, Lori Ramkissoon, Frank Dubois, Kate Schoolcraft, Jessica W. Tsai, Dayle K. Wang, Robert Jones, Jayne Vogelzang, Kristine Pelton, Sarah Becker, Fiona Watkinson, Claire Sinai, Elizabeth Cohen, Matthew Booker, Michael Tolstorukov, Veerle Haemels, Liliana Goumnerova, Karen Wright, Mark Kieran, Katie Fehnel, David Reardon, Arnault Tauziede-Espariat, Rishi Lulla, Benjamin Carcamo, Stanley Chaleff, Alain Charest, Frederik De Smet, Azra H. Ligon, Adrian Dubuc, Melanie Pagès, Pascale Varlet, Patrick Wen, Brian Alexander, Susan Chi, Sanda Alexandrescu, Ralf Kittler, Robert Bachoo, Rameen Beroukhim, Pratiti Bandopadhayay, and Keith L. Ligon
- Subjects
Cancer Research ,Oncology - Abstract
Purpose: Anaplastic Lymphoma Kinase (ALK) aberrations have been identified in pediatric type infant gliomas, but their occurrence across age groups, functional effects, and treatment response have not been broadly established. Experimental Design: We performed a comprehensive analysis of ALK expression and genomic aberrations in both newly-generated and retrospective data from 371 glioblastomas (156 adult, 205 infant/pediatric and 10 congenital) with in vitro and in vivo validation of aberrations. Results: ALK aberrations at the protein or genomic level were detected in 12% of gliomas (45/371) in a wide age range (0-80 years). Recurrent as well as novel ALK fusions (LRRFIP1-ALK, DCTN1-ALK, PRKD3-ALK) were present in 50% (5/10) of congenital/infant, 1.4% (3/205) of pediatric, and 1.9% (3/156) of adult GBMs. ALK fusions were present as the only candidate driver in congenital/infant GBMs, and were sometimes focally amplified. In contrast, adult ALK fusions co-occurred with other oncogenic drivers. No activating ALK mutations were identified in any age group. Novel and recurrent ALK rearrangements promoted STAT3 and ERK1/2 pathways and transformation in vitro and in vivo. ALK-fused GBM cellular and mouse models were responsive to ALK inhibitors, including in patient cells derived from a congenital GBM. Relevant to treatment of infant gliomas, we showed that ALK protein appears minimally expressed in the forebrain at perinatal stages and no gross effects on perinatal brain development was seen in pregnant mice treated with the ALK inhibitor ceritinib. Conclusions: These findings support expanded evaluation of brain-penetrant ALK inhibitors in clinical trials across infant, pediatric, and adult GBMs. Citation Format: Anne-Florence Blandin, Ross Giglio, Maya Srikanth Graham, Guadalupe Garcia, Seth Malinowski, Jared K. Woods, Shakti Ramkissoon, Lori Ramkissoon, Frank Dubois, Kate Schoolcraft, Jessica W. Tsai, Dayle K. Wang, Robert Jones, Jayne Vogelzang, Kristine Pelton, Sarah Becker, Fiona Watkinson, Claire Sinai, Elizabeth Cohen, Matthew Booker, Michael Tolstorukov, Veerle Haemels, Liliana Goumnerova, Karen Wright, Mark Kieran, Katie Fehnel, David Reardon, Arnault Tauziede-Espariat, Rishi Lulla, Benjamin Carcamo, Stanley Chaleff, Alain Charest, Frederik De Smet, Azra H. Ligon, Adrian Dubuc, Melanie Pagès, Pascale Varlet, Patrick Wen, Brian Alexander, Susan Chi, Sanda Alexandrescu, Ralf Kittler, Robert Bachoo, Rameen Beroukhim, Pratiti Bandopadhayay, Keith L. Ligon. ALK amplification and rearrangements are recurrent targetable events in congenital and adult glioblastoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 1201.
- Published
- 2023