1. PLK1 Induces Chromosomal Instability and Overrides Cell-Cycle Checkpoints to Drive Tumorigenesis
- Author
-
Nitai D. Mukhopadhyay, Xavier T.R. Moore, Zheng Fu, Kristi Turner, Yijun Tian, Liang Wang, Lilia Gheghiani, Lei Wang, Colleen Jackson-Cook, Jinglei Zhang, Youwei Zhang, and Steven C. Smith
- Subjects
Male ,0301 basic medicine ,Cancer Research ,Cell cycle checkpoint ,Gene Dosage ,Aneuploidy ,Cell Cycle Proteins ,Mice, Transgenic ,Protein Serine-Threonine Kinases ,Biology ,medicine.disease_cause ,Proto-Oncogene Mas ,PLK1 ,Article ,03 medical and health sciences ,0302 clinical medicine ,Chromosomal Instability ,Neoplasms ,Proto-Oncogene Proteins ,Chromosome instability ,medicine ,Animals ,Humans ,Mitosis ,Cell Proliferation ,Cell Cycle Checkpoints ,Prognosis ,medicine.disease ,Gene Expression Regulation, Neoplastic ,Mice, Inbred C57BL ,Cell Transformation, Neoplastic ,030104 developmental biology ,Oncology ,Centrosome ,030220 oncology & carcinogenesis ,Cancer research ,Female ,Carcinogenesis ,Cytokinesis - Abstract
Polo-like kinase 1 (PLK1) is an essential cell-cycle regulator that is frequently overexpressed in various human cancers. To determine whether Plk1 overexpression drives tumorigenesis, we established transgenic mouse lines that ubiquitously express increased levels of Plk1. High Plk1 levels were a driving force for different types of spontaneous tumors. Increased Plk1 levels resulted in multiple defects in mitosis and cytokinesis, supernumerary centrosomes, and compromised cell-cycle checkpoints, allowing accumulation of chromosomal instability (CIN), which resulted in aneuploidy and tumor formation. Clinically, higher expression of PLK1 positively associated with an increase in genome-wide copy-number alterations in multiple human cancers. This study provides in vivo evidence that aberrant expression of PLK1 triggers CIN and tumorigenesis and highlights potential therapeutic opportunities for CIN-positive cancers. Significance: These findings establish roles for PLK1 as a potent proto-oncogene and a CIN gene and provide insights for the development of effective treatment regimens across PLK1-overexpressing and CIN-positive cancers.
- Published
- 2021