4 results on '"Markus J. Riemenschneider"'
Search Results
2. Differential Spatial Distribution of TSPO or Amino Acid PET Signal and MRI Contrast Enhancement in Gliomas
- Author
-
Lena Kaiser, Adrien Holzgreve, Stefanie Quach, Michael Ingrisch, Marcus Unterrainer, Franziska J. Dekorsy, Simon Lindner, Viktoria Ruf, Julia Brosch-Lenz, Astrid Delker, Guido Böning, Bogdana Suchorska, Maximilian Niyazi, Christian H. Wetzel, Markus J. Riemenschneider, Sophia Stöcklein, Matthias Brendel, Rainer Rupprecht, Niklas Thon, Louisa von Baumgarten, Jörg-Christian Tonn, Peter Bartenstein, Sibylle Ziegler, and Nathalie L. Albert
- Subjects
TSPO PET ,amino acid PET ,FET PET ,glioma ,contrast enhancement ,spatial correlation ,Cancer Research ,Oncology ,nervous system ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 ,Article - Abstract
Simple Summary Radiotracers targeting the translocator protein (TSPO) have recently gained substantial interest, since TSPO is overexpressed in malignant gliomas, where it correlates inversely with patient’s survival. The high-affinity TSPO PET ligand [18F]GE180 was found to depict tumor areas with a remarkably high contrast and has been shown to provide non-invasive information on histological tumor grades. Yet, its significance was questioned with the argument, that the high contrast may solely arise from nonspecific accumulation in tissue supplied by leaky vessels. This study aimed to address this question by providing a detailed evaluation of spatial associations between TSPO and amino acid PET with relative contrast enhancement in T1-weighted MRI. The results show that [18F]GE180 contrast does not reflect a disrupted blood–brain barrier (BBB) only and that multi-modal imaging generates complementary information, which may better depict spatial heterogeneity of tumor biology and may be used to individualize the therapy for each patient. Abstract In this study, dual PET and contrast enhanced MRI were combined to investigate their correlation per voxel in patients at initial diagnosis with suspected glioblastoma. Correlation with contrast enhancement (CE) as an indicator of BBB leakage was further used to evaluate whether PET signal is likely caused by BBB disruption alone, or rather attributable to specific binding after BBB passage. PET images with [18F]GE180 and the amino acid [18F]FET were acquired and normalized to healthy background (tumor-to-background ratio, TBR). Contrast enhanced images were normalized voxel by voxel with the pre-contrast T1-weighted MRI to generate relative CE values (rCE). Voxel-wise analysis revealed a high PET signal even within the sub-volumes without detectable CE. No to moderate correlation of rCE with TBR voxel-values and a small overlap as well as a larger distance of the hotspots delineated in rCE and TBR-PET images were detected. In contrast, voxel-wise correlation between both PET modalities was strong for most patients and hotspots showed a moderate overlap and distance. The high PET signal in tumor sub-volumes without CE observed in voxel-wise analysis as well as the discordant hotspots emphasize the specificity of the PET signals and the relevance of combined differential information from dual PET and MRI images.
- Published
- 2021
3. Non-Invasive Prediction of
- Author
-
Elisabeth, Bumes, Fro-Philip, Wirtz, Claudia, Fellner, Jirka, Grosse, Dirk, Hellwig, Peter J, Oefner, Martina, Häckl, Ralf, Linker, Martin, Proescholdt, Nils Ole, Schmidt, Markus J, Riemenschneider, Claudia, Samol, Katharina, Rosengarth, Christina, Wendl, Peter, Hau, Wolfram, Gronwald, and Markus, Hutterer
- Subjects
D-2-hydroxyglutarate ,1H-MRS ,myo-inositol ,glioma ,18F-FET ,linear support vector machine ,IDH mutation ,Article ,glycine - Abstract
Simple Summary Approximately 75–80% of according to the classification of world health organization (WHO) grade II and III gliomas are characterized by a mutation of the isocitrate dehydrogenase (IDH) enzymes, which are very important in glioma cell metabolism. Patients with IDH mutated glioma have a significantly better prognosis than patients with IDH wildtype status, typically seen in glioblastoma WHO grade IV. Here we used a prospective O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography guided single-voxel 1H-magnetic resonance spectroscopy approach to predict the IDH status before surgery. Finally, 34 patients were included in this neuroimaging study, of whom eight had additionally tissue analysis. Using a machine learning technique, we predicted IDH status with an accuracy of 88.2%, a sensitivity of 95.5% and a specificity of 75.0%. It was newly recognized, that two metabolites (myo-inositol and glycine) have a particularly important role in the determination of the IDH status. Abstract Isocitrate dehydrogenase (IDH)-1 mutation is an important prognostic factor and a potential therapeutic target in glioma. Immunohistological and molecular diagnosis of IDH mutation status is invasive. To avoid tumor biopsy, dedicated spectroscopic techniques have been proposed to detect D-2-hydroxyglutarate (2-HG), the main metabolite of IDH, directly in vivo. However, these methods are technically challenging and not broadly available. Therefore, we explored the use of machine learning for the non-invasive, inexpensive and fast diagnosis of IDH status in standard 1H-magnetic resonance spectroscopy (1H-MRS). To this end, 30 of 34 consecutive patients with known or suspected glioma WHO grade II-IV were subjected to metabolic positron emission tomography (PET) imaging with O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) for optimized voxel placement in 1H-MRS. Routine 1H-magnetic resonance (1H-MR) spectra of tumor and contralateral healthy brain regions were acquired on a 3 Tesla magnetic resonance (3T-MR) scanner, prior to surgical tumor resection and molecular analysis of IDH status. Since 2-HG spectral signals were too overlapped for reliable discrimination of IDH mutated (IDHmut) and IDH wild-type (IDHwt) glioma, we used a nested cross-validation approach, whereby we trained a linear support vector machine (SVM) on the complete spectral information of the 1H-MRS data to predict IDH status. Using this approach, we predicted IDH status with an accuracy of 88.2%, a sensitivity of 95.5% (95% CI, 77.2–99.9%) and a specificity of 75.0% (95% CI, 42.9–94.5%), respectively. The area under the curve (AUC) amounted to 0.83. Subsequent ex vivo 1H-nuclear magnetic resonance (1H-NMR) measurements performed on metabolite extracts of resected tumor material (eight specimens) revealed myo-inositol (M-ins) and glycine (Gly) to be the major discriminators of IDH status. We conclude that our approach allows a reliable, non-invasive, fast and cost-effective prediction of IDH status in a standard clinical setting.
- Published
- 2020
4. Frequent Epigenetic Inactivation of DIRAS-1 and DIRAS-2 Contributes to Chemo-Resistance in Gliomas
- Author
-
Sabit Delic, Natalie Hansen, Guido Reifenberger, Franziska Liesenberg, Sabine Hoja, Tanja Rothhammer-Hampl, and Markus J. Riemenschneider
- Subjects
p53 ,Cancer Research ,medicine.drug_class ,DNA damage ,lomustine ,610 Medizin ,Article ,Glioma ,medicine ,histone modification ,Epigenetics ,RC254-282 ,ddc:610 ,glioblastoma ,chromatin ,methylation ,biology ,Histone deacetylase inhibitor ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,Methylation ,Lomustine ,medicine.disease ,Chromatin ,Histone ,Oncology ,Cancer research ,biology.protein ,medicine.drug - Abstract
Simple Summary We investigated the genes DIRAS-1 and DIRAS-2 in terms of their regulation and functional relevance in brain tumors (gliomas). We found that in a majority of patients the expression of both genes is strongly downregulated on the mRNA level when comparing tumors with healthy brain tissue. We could show that epigenetic mechanisms account for this downregulation. Both promoter methylation and histone modifications are accountable. We performed experiments in tumor tissues (direct bisulfite sequencing and chromatin-immunoprecipitation) and we treated glioblastoma cell lines in a way to overcome epigenetic inactivation of both genes. When genes were re-expressed, the tumor cells turned out more sensitive to alkylating chemotherapeutic agents such as Lomustin. Changes in intracellular pathways related to p53-mediated DNA damage response may explain for this observation. Abstract We previously reported that DIRAS-3 is frequently inactivated in oligodendrogliomas due to promoter hypermethylation and loss of the chromosomal arm 1p. DIRAS-3 inactivation was associated with better overall survival. Consequently, we now investigated regulation and function of its family members DIRAS-1 and DIRAS-2. We found that DIRAS-1 was strongly downregulated in 65% and DIRAS-2 in 100% of analyzed glioma samples compared to non-neoplastic brain tissue (NNB). Moreover, a significant down-regulation of DIRAS-1 and -2 was detected in glioma data obtained from the TCGA database. Mutational analyses did not reveal any inactivating mutations in the DIRAS-1 and -2 coding regions. Analysis of the DIRAS-1 and -2 promoter methylation status showed significantly higher methylation in IDH-mutant astrocytic and IDH-mutant and 1p/19q-codeleted oligodendroglial tumors compared to NNB. Treatment of U251MG and Hs683 glioblastoma cells lines with 5-azacytidine led to significant re-expression of DIRAS-1 and -2. For IDH-wild-type primary gliomas, however, we did not observe significantly elevated DIRAS-1 and -2 promoter methylation levels, but still detected strong downregulation of both DIRAS family members. Additional analyses revealed that DIRAS-1 and -2 expression was also regulated by histone modifications. We observed a shift towards promoter heterochromatinization for DIRAS-1 and less promoter euchromatinization for DIRAS-2 in IDH-wild-type glioblastomas compared to controls. Treatment of the two glioblastoma cell lines with a histone deacetylase inhibitor led to significant re-expression of DIRAS-1 and -2. Functionally, overexpression of DIRAS-1 and -2 in glioblastoma cells translated into significantly higher sensitivity to lomustine treatment. Analyses of DNA damage markers revealed that DIRAS-1 and -2 may play a role in p53-dependent response to alkylating chemotherapy.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.