1. High Temperature Drives Topoisomerase Mediated Chromosomal Break Repair Pathway Choice
- Author
-
Sherif F. El-Khamisy, Sameh Magdeldin, Reham Atteya, Menattallah Elserafy, Walaa R. Allam, Mohamed K. Hassan, Waheba Elsayed, and Mohamed E. Ashour
- Subjects
0301 basic medicine ,Genome instability ,Hyperthermia ,Cancer Research ,DNA damage ,DNA repair ,Article ,03 medical and health sciences ,0302 clinical medicine ,Medicine ,cancer ,RC254-282 ,topoisomerase ,TDP2 ,biology ,TDP1 ,business.industry ,Topoisomerase ,Cancer ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,medicine.disease ,hyperthermia ,genomic instability ,030104 developmental biology ,Oncology ,ageing ,030220 oncology & carcinogenesis ,Cancer cell ,Cancer research ,biology.protein ,business - Abstract
Simple Summary Targeting topoisomerases has been widely used as anticancer therapeutics. Exposure to high temperature (hyperthermia) protects cells from the cytotoxic effect of topoisomerase-targeting therapeutics, yet the mechanism remains unknown. Here, we report that hyperthermia inhibits the nucleolytic processing of topoisomerase-induced DNA damage and drives repair to a more faithful pathway mediated by TDP1 and TDP2. We further show that hyperthermia suppresses topoisomerase-induced chromosomal translocation and hallmarks of inflammation, which has broad implications in cancer development and therapy. Abstract Cancer-causing mutations often arise from inappropriate DNA repair, yet acute exposure to DNA damage is widely used to treat cancer. The challenge remains in how to specifically induce excessive DNA damage in cancer cells while minimizing the undesirable effects of genomic instability in noncancerous cells. One approach is the acute exposure to hyperthermia, which suppresses DNA repair and synergizes with radiotherapy and chemotherapy. An exception, however, is the protective effect of hyperthermia on topoisomerase targeting therapeutics. The molecular explanation for this conundrum remains unclear. Here, we show that hyperthermia suppresses the level of topoisomerase mediated single- and double-strand breaks induced by exposure to topoisomerase poisons. We further uncover that, hyperthermia suppresses hallmarks of genomic instability induced by topoisomerase targeting therapeutics by inhibiting nuclease activities, thereby channeling repair to error-free pathways driven by tyrosyl-DNA phosphodiesterases. These findings provide an explanation for the protective effect of hyperthermia from topoisomerase-induced DNA damage and may help to explain the inverse relationship between cancer incidence and temperature. They also pave the way for the use of controlled heat as a therapeutic adjunct to topoisomerase targeting therapeutics.
- Published
- 2021