1. Copper phosphorylated cellulose nanofibers mediated azide-alkyne cycloaddition click reaction in water.
- Author
-
Bahsis L, Ablouh EH, Hanani Z, Sehaqui H, El Achaby M, Julve M, and Stiriba SE
- Abstract
Heterogenous copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC) was performed by using the phosphorylated carbohydrate-based cellulose nanofibers loaded with copper(II) ions. The copper-containing phosphorylated cellulose nanofibers (here after noted Cu(II)-PCNFs) were prepared in two different morphologies, namely the paper and foam ones and characterized by different techniques, including Scanning Electronic Microscopy (SEM), Energy Dispersive X-ray (EDX), Brauner-Emmett-Teller (BET), FT-IR spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), X-ray Photoelectron spectroscopy (XPS) and Atomic Force Microscopy (AFM). Cu(II)-PCNFs showed high activity in the CuAAC reaction when applied to the ligation of various organic azides and terminal alkynes without any reducing agent, resulting in the regioselective synthesis of 1,4-disubstituted-1,2,3-triazoles in water at room temperature. These nanofibers were recovered and reused with no significant loss of catalytic activity or selectivity. A carbohydrate-based bio-support cellulose as reliable heterogenous catalyst was efficiently developed in view of taking the click chemistry concept to sustainable chemistry., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF