1. Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress
- Author
-
Diego di Bernardo, Ali Tebbi, Annamaria Carissimo, Kosuke Hashimoto, Piero Carninci, Florence Levillayer, Nesrine Boudjadja, Yu Wei, Hugo Varet, Grégory Jouvion, Laurence Fiette, Guillaume Soubigou, Stefano Cairo, Ana Maria Suzuki, Pathogenèse des Virus de l'Hépatite B (PVHB), Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Hépacivirus et Immunité innée, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Histopathologie humaine et Modèles animaux, Institut Pasteur [Paris] (IP), Centre d'Informatique pour la Biologie, XenTech, RIKEN Center for Life Science Technologies (RIKEN CLST), RIKEN - Institute of Physical and Chemical Research [Japon] (RIKEN), Telethon Institute of Genetics and Medicine, European Union’s Seventh Framework Program (FP7) under grant agreement No. 259743 (MODHEP consortium) to the Institut Pasteur (A.T., F.L., Y.W.), RIKEN Center (K.H., A.M.S., P.C.) and Telethon Institute of Genetics and Medicine (D.B.)., European Project: 259743,EC:FP7:HEALTH,FP7-HEALTH-2010-two-stage,MODHEP(2011), Wei, Yu, Systems biology of liver cancer: an integrative genomic-epigenomic approach - MODHEP - - EC:FP7:HEALTH2011-01-01 - 2016-06-30 - 259743 - VALID, Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], Institut Pasteur [Paris], Tebbi, Ali, Levillayer, Florence, Jouvion, Grégory, Fiette, Laurence, Soubigou, Guillaume, Varet, Hugo, Boudjadja, Nesrine, Cairo, Stefano, Hashimoto, Kosuke, Suzuki, Ana Maria, Carninci, Piero, Carissimo, Annamaria, and DI BERNARDO, Diego
- Subjects
0301 basic medicine ,Male ,Cancer Research ,Nude ,Apoptosis ,medicine.disease_cause ,Cell Transformation ,Lipid peroxidation ,chemistry.chemical_compound ,Mice ,Adenomatous Polyposis Coli ,Animals ,Cell Transformation, Neoplastic ,Cells, Cultured ,DNA Damage ,Female ,Fibroblasts ,Intestinal Neoplasms ,Lipid Peroxidation ,Liver ,Mice, Inbred BALB C ,Mice, Knockout ,Mice, Nude ,Oxidative Stress ,P-Glycoproteins ,Reactive Oxygen Species ,Inbred BALB C ,Cultured ,Bile acid ,General Medicine ,3. Good health ,Biochemistry ,ATP Binding Cassette Transporter, Subfamily B ,DNA damage ,medicine.drug_class ,Cells ,Knockout ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Original Manuscript ,Biology ,NO ,03 medical and health sciences ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,Lipid biosynthesis ,medicine ,Neoplastic ,Fatty acid metabolism ,Microarray analysis techniques ,[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology ,HCCS ,Molecular biology ,[SDV.MHEP.HEG] Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology ,030104 developmental biology ,chemistry ,Carcinogenesis - Abstract
Summary The transporter of phosphatidylcholine Mdr2/MDR3 not only plays an essential role for bile formation but also is involved in the maintenance of lipid homeostasis. Deficiency of Mdr2 leads to accumulation of ROS, cell transformation and susceptibility to intestinal carcinogenesis., Multidrug resistance 2 (Mdr2), also called adenosine triphosphate-binding cassette B4 (ABCB4), is the transporter of phosphatidylcholine (PC) at the canalicular membrane of mouse hepatocytes, which plays an essential role for bile formation. Mutations in human homologue MDR3 are associated with several liver diseases. Knockout of Mdr2 results in hepatic inflammation, liver fibrosis and hepatocellular carcinoma (HCC). Whereas the pathogenesis in Mdr2 −/− mice has been largely attributed to the toxicity of bile acids due to the absence of PC in the bile, the question of whether Mdr2 deficiency per se perturbs biological functions in the cell has been poorly addressed. As Mdr2 is expressed in many cell types, we used mouse embryonic fibroblasts (MEF) derived from Mdr2 −/− embryos to show that deficiency of Mdr2 increases reactive oxygen species accumulation, lipid peroxidation and DNA damage. We found that Mdr2 −/− MEFs undergo spontaneous transformation and that Mdr2 −/− mice are more susceptible to chemical carcinogen-induced intestinal tumorigenesis. Microarray analysis in Mdr2−/− MEFs and cap analysis of gene expression in Mdr2 −/− HCCs revealed extensively deregulated genes involved in oxidation reduction, fatty acid metabolism and lipid biosynthesis. Our findings imply a close link between Mdr2 −/−-associated tumorigenesis and perturbation of these biological processes and suggest potential extrahepatic functions of Mdr2/MDR3.
- Published
- 2015
- Full Text
- View/download PDF