6 results on '"Barrère-Lemaire S"'
Search Results
2. A novel therapeutic peptide targeting myocardial reperfusion injury.
- Author
-
Boisguérin P, Covinhes A, Gallot L, Barrère C, Vincent A, Busson M, Piot C, Nargeot J, Lebleu B, and Barrère-Lemaire S
- Subjects
- Animals, Cell Line, Cell Survival drug effects, Co-Repressor Proteins metabolism, Disease Models, Animal, Male, Mice, Inbred C57BL, Molecular Chaperones metabolism, Myocardial Infarction metabolism, Myocardial Infarction pathology, Myocardial Infarction physiopathology, Myocardial Reperfusion Injury metabolism, Myocardial Reperfusion Injury pathology, Myocardial Reperfusion Injury physiopathology, Myocytes, Cardiac metabolism, Myocytes, Cardiac pathology, Recovery of Function drug effects, Signal Transduction, fas Receptor metabolism, Apoptosis drug effects, Cell-Penetrating Peptides pharmacology, Co-Repressor Proteins antagonists & inhibitors, Molecular Chaperones antagonists & inhibitors, Myocardial Infarction prevention & control, Myocardial Reperfusion Injury prevention & control, Myocytes, Cardiac drug effects
- Abstract
Aims: Regulated cell death is a main contributor of myocardial ischaemia-reperfusion (IR) injury during acute myocardial infarction. In this context, targeting apoptosis could be a potent therapeutical strategy. In a previous study, we showed that DAXX (death-associated protein) was essential for transducing the FAS-dependent apoptotic signal during IR injury. The present study aims at evaluating the cardioprotective effects of a synthetic peptide inhibiting FAS:DAXX interaction., Methods and Results: An interfering peptide was engineered and then coupled to the Tat cell penetrating peptide (Tat-DAXXp). Its internalization and anti-apoptotic properties were demonstrated in primary cardiomyocytes. Importantly, an intravenous bolus injection of Tat-DAXXp (1 mg/kg) 5 min before reperfusion in a murine myocardial IR model decreased infarct size by 48% after 24 h of reperfusion. In addition, Tat-DAXXp was still efficient after a 30-min delayed administration, and was completely degraded and eliminated within 24 h thereby reducing risks of potential side effects. Importantly, Tat-DAXXp reduced mouse early post-infarction mortality by 67%. Mechanistically, cardioprotection was supported by both anti-apoptotic and pro-survival effects, and an improvement of myocardial functional recovery as evidenced in ex vivo experiments., Conclusions: Our study demonstrates that a single dose of Tat-DAXXp injected intravenously at the onset of reperfusion leads to a strong cardioprotection in vivo by inhibiting IR injury validating Tat-DAXXp as a promising candidate for therapeutic application., (Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2019. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
3. Cardiac mGluR1 metabotropic receptors in cardioprotection.
- Author
-
Vincent A, Sportouch C, Covinhes A, Barrère C, Gallot L, Delgado-Betancourt V, Lattuca B, Solecki K, Boisguérin P, Piot C, Nargeot J, and Barrère-Lemaire S
- Subjects
- Animals, Disease Models, Animal, Excitatory Amino Acid Antagonists pharmacology, Genetic Predisposition to Disease, Mice, Inbred C57BL, Mice, Knockout, Myocardial Infarction metabolism, Myocardial Infarction pathology, Myocardial Infarction physiopathology, Myocardial Reperfusion Injury metabolism, Myocardial Reperfusion Injury pathology, Myocardial Reperfusion Injury physiopathology, Myocardium pathology, Phenotype, Phosphatidylinositol 3-Kinase metabolism, Proto-Oncogene Proteins c-akt metabolism, Receptors, Metabotropic Glutamate deficiency, Receptors, Metabotropic Glutamate genetics, Signal Transduction, Time Factors, Ventricular Function, Left drug effects, Excitatory Amino Acid Agonists administration & dosage, Glutamine administration & dosage, Myocardial Infarction prevention & control, Myocardial Reperfusion Injury prevention & control, Myocardium metabolism, Receptors, Metabotropic Glutamate agonists
- Abstract
Aims: In a previous study using a genome-wide microarray strategy, we identified metabotropic glutamate receptor 1 (mGluR1) as a putative cardioprotective candidate in ischaemic postconditioning (PostC). In the present study, we investigated the role of cardiac mGluR1 receptors during cardioprotection against myocardial ischaemia-reperfusion injury in the mouse myocardium., Methods and Results: mGluR1 activation by glutamate administered 5 min before reperfusion in C57Bl/6 mice subjected to a myocardial ischaemia protocol strongly decreased both infarct size and DNA fragmentation measured at 24 h reperfusion. This cardioprotective effect was mimicked by the mGluR1 agonist, DHPG (10 μM), and abolished when glutamate was coinjected with the mGluR1 antagonist YM298198 (100 nM). Wortmannin (100 nM), an inhibitor of PI3-kinase, was able to prevent glutamate-induced cardioprotection. A glutamate bolus at the onset of reperfusion failed to protect the heart of mGluR1 knockout mice subjected to a myocardial ischaemia-reperfusion protocol, although PostC still protected the mGluR1 KO mice. Glutamate-treatment improved post-infarction functional recovery as evidenced by an echocardiographic study performed 15 days after treatment and by a histological evaluation of fibrosis 21 days post-treatment. Interestingly, restoration of functional mGluR1s by a PostC stimulus was evidenced at the transcriptional level. Since mGluR1s were localized at the surface membrane of cardiomyocytes, they might contribute to the cardioprotective effect of ischaemic PostC as other Gq-coupled receptors., Conclusion: This study provides the first demonstration that mGluR1 activation at the onset of reperfusion induces cardioprotection and might represent a putative strategy to prevent ischaemia-reperfusion injury., (Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF
4. Down-regulation of the transcription factor ZAC1 upon pre- and postconditioning protects against I/R injury in the mouse myocardium.
- Author
-
Vincent A, Gahide G, Sportouch-Dukhan C, Covinhes A, Franck-Miclo A, Roubille F, Barrère C, Adda J, Dantec C, Redt-Clouet C, Piot C, Nargeot J, and Barrère-Lemaire S
- Subjects
- Animals, Apoptosis, Cell Cycle Proteins genetics, Down-Regulation, Echocardiography, Genes, Tumor Suppressor, Mice, Mice, Inbred C57BL, Mice, Knockout, Myocardial Infarction genetics, Myocardial Reperfusion Injury genetics, Myocardial Reperfusion Injury prevention & control, Myocardium pathology, Oligonucleotide Array Sequence Analysis, RNA, Messenger metabolism, Real-Time Polymerase Chain Reaction, Transcription Factors genetics, Cell Cycle Proteins metabolism, Ischemic Postconditioning methods, Ischemic Preconditioning, Myocardial methods, Myocardial Infarction metabolism, Myocardial Reperfusion Injury metabolism, Myocardium metabolism, Transcription Factors metabolism
- Abstract
Aims: Myocardial infarction leads to heart failure and death. Ischaemic preconditioning (PreC) and postconditioning (PostC) reduce infarct size in animal models and human. Zac1 was identified as the only gene related to apoptosis and jointly down-regulated upon PreC and PostC. The aim of our study was to investigate the role of Zac1 down-regulation during ischaemia-reperfusion (I/R) in vivo., Methods and Results: C57BL/6 mice were submitted to myocardial I/R injury, PreC, or PostC protocols. QPCR and immunochemistry showed that Zac1 expression was down-regulated both at the transcriptional and the protein levels upon PreC and PostC. Zac1(-/-) Knockout mice (n = 7) developed smaller infarcts (54%) than Zac1(+/+) littermates (n = 8) and decreased apoptosis (61.7%) in the ischaemic part of the left ventricle during I/R (Zac1(-/-), n = 6 vs. Zac1(+/+), n = 7; P = 0.0012). Mutants showed under control conditions a decrease of 53.9% in mRNA of Daxx, a pro-apoptotic protein playing a key role in I/R injuries (4.81 ± 0.77, n = 4 Zac1(-/-) mice vs. 10.44 ± 3.5, n = 7 Zac1(+/+) mice; P = 0.0121)., Conclusion: Our study shows for the first time that Zac1 is down-regulated both at the transcriptional and protein levels upon PreC and PostC in wild-type mice. Moreover, inactivation of Zac1 in vivo is associated with a decreased amount of Daxx transcripts and, upon I/R injury, decreased infarct size and apoptosis. Altogether, our results show that Zac1 down-regulation plays a key role during cardioprotection against I/R injury and support the concept that cardioprotection regulates a network of interacting pro-apoptotic genes including Zac1 and Daxx.
- Published
- 2012
- Full Text
- View/download PDF
5. Aldosterone increases T-type calcium channel expression and in vitro beating frequency in neonatal rat cardiomyocytes.
- Author
-
Lalevée N, Rebsamen MC, Barrère-Lemaire S, Perrier E, Nargeot J, Bénitah JP, and Rossier MF
- Subjects
- Animals, Animals, Newborn, Calcium Channels, L-Type genetics, Calcium Channels, L-Type metabolism, Calcium Channels, T-Type genetics, Corticosterone pharmacology, Glucocorticoids antagonists & inhibitors, Heart Ventricles, Mifepristone pharmacology, Mineralocorticoid Receptor Antagonists pharmacology, Myocytes, Cardiac drug effects, Patch-Clamp Techniques, Rats, Rats, Wistar, Reverse Transcriptase Polymerase Chain Reaction, Spironolactone pharmacology, Stimulation, Chemical, Aldosterone pharmacology, Calcium Channels, T-Type metabolism, Myocardial Contraction drug effects, Myocytes, Cardiac metabolism
- Abstract
Objective: Although aldosterone has been implicated in the pathogenesis of cardiac hypertrophy and heart failure, its cellular mechanism of action on cardiomyocyte function is not yet completely elucidated. This study was designed to investigate the effect of aldosterone on calcium channel expression and cardiomyocyte contraction frequency., Methods: Cultured neonatal rat ventricular cardiomyocytes were stimulated in vitro with 1 micromol/L aldosterone for 24 h. Calcium currents were then measured with the patch clamp technique, while calcium channel expression was assessed by real-time RT-PCR., Results: In the present study, we show that aldosterone increases Ca2+ currents by inducing channel expression. Indeed, aldosterone led to a substantial increase of L- and T-type Ca2+ current amplitudes, and we found a concomitant 55% increase of the mRNA coding for alpha1C and beta2 subunits of cardiac L channels. Although T-type currents were relatively small under control conditions, they increased 4-fold and T channel alpha1H isoform expression rose in the same proportion after aldosterone treatment. Because T channels have been implicated in the modulation of membrane electrical activity, we investigated whether aldosterone affects the beating frequency of isolated cardiomyocytes. In fact, aldosterone dose-dependently increased the spontaneous beating frequency more than 4-fold. This effect of aldosterone was prevented by actinomycin D and spironolactone and reduced by RU486, suggesting a mixed mineralocorticoid/glucocorticoid receptor-dependent transcriptional mechanism. Moreover, inhibition of T currents with Ni2+ or mibefradil significantly reduced beating frequency towards control values, while conditions affecting L-type currents completely blocked contractions., Conclusion: Aldosterone modulates the expression of cardiac voltage-operated Ca2+ channels and accelerates beating in cultured neonatal rat ventricular myocytes. This chronotropic action of aldosterone appears to be linked to increased T channel activity and could contribute to the deleterious effect of an excess of this steroid in vivo on cardiac function.
- Published
- 2005
- Full Text
- View/download PDF
6. Adenosine receptors, heart rate, and cardioprotection.
- Author
-
Mangoni ME and Barrère-Lemaire S
- Subjects
- Animals, Genetic Therapy methods, Heart Conduction System physiology, Humans, Mice, Myocardial Ischemia metabolism, Myocardial Ischemia prevention & control, Receptors, Purinergic P1 genetics, Adenosine metabolism, Heart Rate physiology, Myocardium metabolism, Receptors, Purinergic P1 metabolism
- Published
- 2004
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.