1. Interaction between Hexametaphosphate, Other Active Ingredients of Toothpastes, and Erosion-Abrasion in Enamel in vitro.
- Author
-
Luka B, Duerrschnabel A, Neumaier S, Schlueter N, and Vach K
- Subjects
- Humans, Toothpastes pharmacology, Toothpastes chemistry, Fluorides pharmacology, Sodium Fluoride pharmacology, Dental Enamel, Tooth Erosion prevention & control, Tooth Abrasion etiology, Tooth Abrasion prevention & control, Tooth Wear
- Abstract
Sodium hexametaphosphate (HMP) as toothpaste additive is claimed to reduce erosive tooth wear and to stabilize stannous ions. However, little is known about the impact of concentration and its interactions with fluoride (F) or stannous+fluoride ions (F/Sn) on enamel erosion and erosion-abrasion. In a 10 day cyclic in vitro erosion-abrasion model, 320 flat human enamel specimens were divided into ten groups (n = 32 each) and daily subjected to six erosive challenges (0.5% citric acid, 2 min) and two toothpaste suspension applications (2 min, 1:3 F-free toothpaste:mineral-salt solution, 0.23% sodium gluconate). Half of specimens per group were additionally brushed twice/day (200 g, 15 s) during suspension immersion. Nine suspensions contained HMP (0.25%, 1.75%, 3.25%), either on its own or combined with F (373 ppm F-) or F/Sn (800 ppm Sn2+, 373 ppm F-). One suspension contained sodium gluconate only (NegContr). After 10 days, specimens' surfaces were analysed with profilometry, energy dispersive X-ray spectroscopy, and scanning electron microscopy. Tissue loss (µm, mean ± standard deviation) in NegContr was 10.9 ± 2.0 (erosion), 22.2 ± 1.6 (erosion-abrasion). Under erosive conditions, only 0.25% HMP in any combination and 1.75% HMP with F/Sn reduced loss significantly (-28% to -54%); 3.25% HMP without F and F/Sn increased loss significantly (+35%). With additional abrasion, no suspension reduced loss significantly compared to NegContr, instead, in groups without F and F/Sn or with 3.25% HMP loss was increased (+15% to +30%). Conclusively, at higher concentrations, HMP increased erosive tooth wear and seemed to reduce anti-erosive effects of fluoride and stannous ions., (© 2023 The Author(s). Published by S. Karger AG, Basel.)
- Published
- 2023
- Full Text
- View/download PDF