1. Immobilization of Pyrroloquinoline Quinone-Dependent Alcohol Dehydrogenase with a Polyion Complex and Redox Polymer for a Bioanode.
- Author
-
Yuki Sakurada, Kouta Takeda, Hiroyuki Ohno, and Nobuhumi Nakamura
- Subjects
- *
PQQ (Biochemistry) , *PSEUDOMONAS putida , *ETHANOL - Abstract
A bioanode for ethanol oxidation was prepared by immobilizing the recombinant pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase from Pseudomonas putida KT 2440 (PpADH) with polyion complex (PIC) and redox polymer. The PIC based on poly-L-lysine (PLL) and poly-L-glutamic acid (PGA) was suitable for immobilizing PpADH on the electrode. PpADH was immobilized using only one redox polymer, aminoferrocene, which was attached to the PGA backbone (PGA-AmFc) on the electrode. The anodic current density at 0.6 V (vs. Ag/AgCl) was 22.6 µA·cm-2However, when the number of the cycles was increased, the catalytic current drastically decreased. PpADH was immobilized using PGA-AmFc and PIC on the electrode. The anodic current density at 0.5 V (vs. Ag/AgCl) was 47.3 µA·cm-2 and the performance maintained 74% of the initial value after five cycles. This result indicated that the combination of PIC and PGA-AmFc was suitable for the immobilization of PpADH on the electrode. In addition, the long-term stability and catalytic current density were improved by using the large surface area afforded by the gold nanoparticles. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF