1. The Effects of Support Specific Surface Area and Active Metal on the Performance of Biphenyl Selective Hydrogenation to Cyclohexylbenzene.
- Author
-
Fan, Jie, Li, Wei, Yang, Jingyi, Yang, Tao, Liu, Zhongyi, and Zhang, Meng
- Subjects
- *
TRANSITION metal catalysts , *COPPER , *AROMATIC compounds , *MANUFACTURING processes , *X-ray diffraction - Abstract
With the rapid development of modern society, the consumption of fossil fuels during the industrial production process produces a significant amount of carcinogens. Converting the highly toxic biphenyl (BP) to the valuable product cyclohexylbenzene (CHB) can decrease the emission of carcinogenic aromatic hydrocarbons. In this study, we prepared a series of 20%Ni/SiO2 catalysts with different specific surface areas (SSAs) using the over-volume impregnation method, as well as 20%M/SiO2 (M = Fe, Cu, Co, and Ni) catalysts to highlight the effects of support SSAs and active metal on the performance of BP selective hydrogenation to CHB. The catalysts were characterized by XRD, N2 physisorption, TEM, and H2-TPR, which demonstrated that a high SSA would be helpful for the dispersion of the active metal. The evaluation results revealed that 20%Ni/SiO2-300 exhibited excellent activity and stability in the selective hydrogenation of BP to CHB (BP conversion: 99.6%, CHB yield: 99.3% at the conditions of 200 °C, 3 MPa, 4 h and isopropanol as the solvent) among the catalysts with different SSAs, which was also superior to the performance over the catalysts with other transition metals as the active sites. The structure–activity relationship of the employed catalysts for the selective hydrogenation of BP to CHB was also discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF