1. Crossover invariance determined by partner choice for meiotic DNA break repair.
- Author
-
Hyppa RW and Smith GR
- Subjects
- DNA Breaks, Double-Stranded, DNA, Cruciform, Rad51 Recombinase metabolism, Saccharomyces cerevisiae cytology, Saccharomyces cerevisiae genetics, Saccharomyces cerevisiae metabolism, Schizosaccharomyces cytology, Schizosaccharomyces genetics, Schizosaccharomyces pombe Proteins metabolism, Crossing Over, Genetic, DNA Repair, Meiosis, Schizosaccharomyces metabolism
- Abstract
Crossovers between meiotic homologs are crucial for their proper segregation, and crossover number and position are carefully controlled. Crossover homeostasis in budding yeast maintains crossovers at the expense of noncrossovers when double-strand DNA break (DSB) frequency is reduced. The mechanism of maintaining constant crossover levels in other species has been unknown. Here we investigate in fission yeast a different aspect of crossover control--the near invariance of crossover frequency per kb of DNA despite large variations in DSB intensity across the genome. Crossover invariance involves the choice of sister chromatid versus homolog for DSB repair. At strong DSB hotspots, intersister repair outnumbers interhomolog repair approximately 3:1, but our genetic and physical data indicate the converse in DSB-cold regions. This unanticipated mechanism of crossover control may operate in many species and explain, for example, the large excess of DSBs over crossovers and the repair of DSBs on unpaired chromosomes in diverse species., (Copyright 2010 Elsevier Inc. All rights reserved.)
- Published
- 2010
- Full Text
- View/download PDF