3 results on '"LTSER «Zone Atelier Plaine '
Search Results
2. Neonicotinoids: Still present in farmland birds despite their ban.
- Author
-
Fuentes E, Gaffard A, Rodrigues A, Millet M, Bretagnolle V, Moreau J, and Monceau K
- Subjects
- Animals, Humans, Farms, Neonicotinoids toxicity, Thiazoles, Nitro Compounds, Quail, Insecticides, Songbirds
- Abstract
Neonicotinoids (neonics) are the most widely used insecticides worldwide and are considered to be of low risk to non-target organisms such as vertebrates. Further, they are reported to be rapidly excreted and metabolized, reducing their potential toxicity. Nevertheless, growing evidence of adverse effects of neonics on farmland bird species raise questions about the purported harmless nature of these pesticides. We attempted to search for pesticide residues in species of different trophic levels and at different life stages, by using multiple bird monitoring programs on a Long-Term Socio-Ecological Research (LTSER) platform. Three passerine birds-the blackbird (Turdus merula), cirl bunting (Emberiza cirlus), and common nightingale (Luscinia megarhynchos)-that feed on seeds and invertebrates were monitored during their reproductive period, and the grey partridge (Perdix perdix) that feeds on seeds was monitored during its wintering period. We also monitored chicks of an apex predator-the Montagu's harrier (Circus pygargus)-that preys mostly upon common voles but also upon insects. We found that the birds' blood samples showed presence of residues of five neonics: three banned since 2018 in France-clothianidin, thiacloprid, and thiamethoxam-and two-dinotefuran and nitenpyram-used for veterinary purposes only. While none of these neonics was detected in blackbirds, all were present in grey partridges. Clothianidin was detected in all species, except blackbirds. Concentrations of the three banned neonics were similar or higher than concentrations found in birds monitored elsewhere before the ban. These findings raise questions about the persistence of neonics within the environment and the mode of exposure to wild fauna. Future investigations on the sublethal effects of these neonics on life-history traits of these farmland birds may help in providing a better understanding of the effects of exposure of bird populations to these insecticides, and also to the consequent effect on human health., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
3. Glyphosate, AMPA and glufosinate in soils and earthworms in a French arable landscape.
- Author
-
Pelosi C, Bertrand C, Bretagnolle V, Coeurdassier M, Delhomme O, Deschamps M, Gaba S, Millet M, Nélieu S, and Fritsch C
- Subjects
- Aminobutyrates, Animals, Glycine analogs & derivatives, Soil, alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid, Glyphosate, Herbicides analysis, Herbicides toxicity, Oligochaeta, Soil Pollutants analysis
- Abstract
Although Glyphosate-based herbicides are often marketed as environmentally friendly and easily biodegradable, its bioavailability and risks to wildlife raise significant concerns. Among non-target organisms, earthworms which live in close contact with the soil can be directly exposed to pesticides and harmed. We investigated soil contamination and the exposure of earthworms to glyphosate, its metabolite AMPA, and glufosinate in an arable landscape in France, both in treated (i.e. temporary grasslands and cereal fields under conventional farming), and nontreated habitats (i.e. hedgerows, permanent grasslands and cereal fields under organic farming) (n = 120 sampling sites in total). Glyphosate, AMPA and glufosinate were detected in 88%, 58% and 35% of the soil samples, and in 74%, 38% and 12% of the earthworm samples, respectively. For both glyphosate and AMPA, concentrations in soils were at least 10 times lower than predicted environmental concentrations. However, the maximum glyphosate soil concentration measured (i.e., 0.598 mg kg
-1 ) was only 2 to 3 times lower than the concentrations revealed to affect earthworms (survival and avoidance) in the literature. These compounds were found both in conventional and organic farming fields, thus supporting a recent study, and for the first time they were detected in hedgerows and grasslands. However, glyphosate and AMPA were more frequently detected in soils from cereal fields and hedgerows than in grasslands, and median concentrations measured in soils from cereal fields were significantly higher than in the two other habitats. Bioaccumulation of glyphosate and AMPA in earthworms was higher than expected according to the properties of the molecules. Our findings raised issues about the high occurrence of glyphosate and AMPA in soils from cropped and more natural areas in arable landscapes. They also highlight the potential for transfer of these molecules in terrestrial food webs as earthworms are prey for numerous animals., (Copyright © 2022 Elsevier Ltd. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.