1. Continuous Glycoprotein-130–Mediated Signal Transducer and Activator of Transcription-3 Activation Promotes Inflammation, Left Ventricular Rupture, and Adverse Outcome in Subacute Myocardial Infarction
- Author
-
Gunnar Klein, Arnd Schaefer, Melanie Hoch, Andres Hilfiker, Werner Müller, Britta Stapel, Gregor Theilmeier, Michaela Scherr, Denise Hilfiker-Kleiner, Matthias Ernst, Praphulla C. Shukla, and Helmut Drexler
- Subjects
STAT3 Transcription Factor ,medicine.medical_specialty ,medicine.medical_treatment ,Mutation, Missense ,Myocardial Infarction ,Down-Regulation ,Protein tyrosine phosphatase ,Mice ,Physiology (medical) ,Internal medicine ,Cytokine Receptor gp130 ,medicine ,Animals ,Humans ,Myocytes, Cardiac ,Protein kinase B ,Rupture, Spontaneous ,Interleukin-6 ,business.industry ,Kinase ,Glycoprotein 130 ,Mice, Mutant Strains ,Myocarditis ,Endocrinology ,Cytokine ,STAT protein ,Signal transduction ,Cardiology and Cardiovascular Medicine ,Janus kinase ,business - Abstract
Background— In patients with myocardial infarction, high serum levels of interleukin-6 cytokines predict a poor outcome. The common receptor of interleukin-6 cytokines, glycoprotein-130 (gp130), signals via janus kinase/signal transducer and activator of transcription (STAT), cytoplasmic protein tyrosine phosphatase/extracellular signal-regulated kinase, and phosphoinositide-3-kinase/Akt pathways, and the regulation of these pathways depends at least in part on the gp130 tyrosine-757 residue. By analyzing cardiomyocyte-specific gp130 Y757F mutant mice, we investigated the effect of disturbed gp130 signaling after myocardial infarction. Methods and Results— The cardiomyocyte-restricted α-myosin heavy chain-Cre-recombinase-loxP system was used to generate mice with gp130 Y757F mutant cardiomyocytes ( αMHC-Cre tg/− ;gp130 fl/Y757F [Y 757 F]); all other cells carried at least 1 functional gp130 gene, ensuring normal gp130 signaling. Y 757 F mice displayed normal cardiac function and morphology at 3 months of age comparable to their nonmutant littermates. In response to myocardial infarction, Y 757 F mice displayed higher mortality associated with increased left ventricular rupture rate, sustained cardiac inflammation, and heart failure. These adverse effects were associated with prolonged and enhanced STAT3 activation and increased expression of interleukin-6 and of the complement-activating mannose-binding lectin C. Pharmacological inhibition of the complement system by cobra venom factor attenuated inflammation, prevented left ventricular rupture, and improved cardiac function in Y 757 F mice. Stronger effects were observed with a genetic reduction of STAT3 (STAT3 flox/+ ) restricted to cardiomyocytes in Y 757 F mice, which prevented extensive upregulation of interleukin-6, complement activation, and sustained inflammation and lowered left ventricular rupture rate, heart failure, and mortality in subacute myocardial infarction. Conclusion— Impaired downregulation of gp130-mediated STAT3 activation in subacute infarction promotes cardiac inflammation, adverse remodeling, and heart failure, suggesting a potential causative role of high interleukin-6 serum levels after myocardial infarction.
- Published
- 2010