3 results on '"Stolina M"'
Search Results
2. Myocardial Gene Expression Signatures in Human Heart Failure With Preserved Ejection Fraction.
- Author
-
Hahn VS, Knutsdottir H, Luo X, Bedi K, Margulies KB, Haldar SM, Stolina M, Yin J, Khakoo AY, Vaishnav J, Bader JS, Kass DA, and Sharma K
- Subjects
- Aged, Cardiac Catheterization methods, Female, Heart Failure pathology, Humans, Male, Middle Aged, Myocardium pathology, Prospective Studies, Heart Failure genetics, Heart Failure metabolism, Myocardium metabolism, Stroke Volume physiology, Transcriptome physiology
- Abstract
Background: Heart failure (HF) with preserved ejection fraction (HFpEF) constitutes half of all HF but lacks effective therapy. Understanding of its myocardial biology remains limited because of a paucity of heart tissue molecular analysis., Methods: We performed RNA sequencing on right ventricular septal endomyocardial biopsies prospectively obtained from patients meeting consensus criteria for HFpEF (n=41) contrasted with right ventricular septal tissue from patients with HF with reduced ejection fraction (HFrEF, n=30) and donor controls (n=24). Principal component analysis and hierarchical clustering tested for transcriptomic distinctiveness between groups, effect of comorbidities, and differential gene expression with pathway enrichment contrasted HF groups and donor controls. Within HFpEF, non-negative matrix factorization and weighted gene coexpression analysis identified molecular subgroups, and the resulting clusters were correlated with hemodynamic and clinical data., Results: Patients with HFpEF were more often women (59%), African American (68%), obese (median body mass index 41), and hypertensive (98%), with clinical HF characterized by 65% New York Heart Association Class III or IV, nearly all on a loop diuretic, and 70% with a HF hospitalization in the previous year. Principal component analysis separated HFpEF from HFrEF and donor controls with minimal overlap, and this persisted after adjusting for primary comorbidities: body mass index, sex, age, diabetes, and renal function. Hierarchical clustering confirmed group separation. Nearly half the significantly altered genes in HFpEF versus donor controls (1882 up, 2593 down) changed in the same direction in HFrEF; however, 5745 genes were uniquely altered between HF groups. Compared with controls, uniquely upregulated genes in HFpEF were enriched in mitochondrial adenosine triphosphate synthesis/electron transport, pathways downregulated in HFrEF. HFpEF-specific downregulated genes engaged endoplasmic reticulum stress, autophagy, and angiogenesis. Body mass index differences largely accounted for HFpEF upregulated genes, whereas neither this nor broader comorbidity adjustment altered pathways enriched in downregulated genes. Non-negative matrix factorization identified 3 HFpEF transcriptomic subgroups with distinctive pathways and clinical correlates, including a group closest to HFrEF with higher mortality, and a mostly female group with smaller hearts and proinflammatory signaling. These groupings remained after sex adjustment. Weighted gene coexpression analysis yielded analogous gene clusters and clinical groupings., Conclusions: HFpEF exhibits distinctive broad transcriptomic signatures and molecular subgroupings with particular clinical features and outcomes. The data reveal new signaling targets to consider for precision therapeutics.
- Published
- 2021
- Full Text
- View/download PDF
3. Cinacalcet, Fibroblast Growth Factor-23, and Cardiovascular Disease in Hemodialysis: The Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) Trial.
- Author
-
Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Correa-Rotter R, Drüeke TB, Herzog CA, London GM, Mahaffey KW, Wheeler DC, Stolina M, Dehmel B, Goodman WG, and Floege J
- Subjects
- Adult, Aged, Cardiovascular Diseases mortality, Cinacalcet, Female, Fibroblast Growth Factor-23, Humans, Hyperthyroidism blood, Hyperthyroidism drug therapy, Hyperthyroidism mortality, Male, Middle Aged, Cardiovascular Diseases blood, Cardiovascular Diseases prevention & control, Fibroblast Growth Factors blood, Naphthalenes therapeutic use, Renal Dialysis mortality
- Abstract
Background: Patients with kidney disease have disordered bone and mineral metabolism, including elevated serum concentrations of fibroblast growth factor-23 (FGF23). These elevated concentrations are associated with cardiovascular and all-cause mortality. The objective was to determine the effects of the calcimimetic cinacalcet (versus placebo) on reducing serum FGF23 and whether changes in FGF23 are associated with death and cardiovascular events., Methods and Results: This was a secondary analysis of a randomized clinical trial comparing cinacalcet to placebo in addition to conventional therapy (phosphate binders/vitamin D) in patients receiving hemodialysis with secondary hyperparathyroidism (intact parathyroid hormone ≥300 pg/mL). The primary study end point was time to death or a first nonfatal cardiovascular event (myocardial infarction, hospitalization for angina, heart failure, or a peripheral vascular event). This analysis included 2985 patients (77% of randomized) with serum samples at baseline and 2602 patients (67%) with samples at both baseline and week 20. The results demonstrated that a significantly larger proportion of patients randomized to cinacalcet had ≥30% (68% versus 28%) reductions in FGF23. Among patients randomized to cinacalcet, a ≥30% reduction in FGF23 between baseline and week 20 was associated with a nominally significant reduction in the primary composite end point (relative hazard, 0.82; 95% confidence interval, 0.69-0.98), cardiovascular mortality (relative hazard, 0.66; 95% confidence interval, 0.50-0.87), sudden cardiac death (relative hazard, 0.57; 95% confidence interval, 0.37-0.86), and heart failure (relative hazard, 0.69; 95% confidence interval, 0.48-0.99)., Conclusions: Treatment with cinacalcet significantly lowers serum FGF23. Treatment-induced reductions in serum FGF23 are associated with lower rates of cardiovascular death and major cardiovascular events., Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00345839., (© 2015 American Heart Association, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.