1. Generation of Genetically Engineered Mouse Lung Organoid Models for Squamous Cell Lung Cancers Allows for the Study of Combinatorial Immunotherapy
- Author
-
Lynette M. Sholl, Ting Chen, Josephine Hai, Zhong Wu, Patrick H. Lizotte, Cassandra Thakurdin, Jiehui Deng, Christine Ng, Yuanwang Pan, Joshua D. Campbell, Adam J. Bass, Catríona M. Dowling, Jin Zhou, Val Pyon, Roderick T. Bronson, Eleni Papadopoulos, Heather Silver, Jie Bin Liu, Kwok-Kin Wong, Ming-Sound Tsao, and Hua Zhang
- Subjects
0301 basic medicine ,Cancer Research ,Lung Neoplasms ,medicine.medical_treatment ,Antigen presentation ,Cell ,Gene Expression ,Mice, Transgenic ,Biology ,Article ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Lymphocytes, Tumor-Infiltrating ,SOX2 ,Genome editing ,Cell Line, Tumor ,medicine ,Biomarkers, Tumor ,Cytotoxic T cell ,Animals ,Humans ,Lung ,Gene Editing ,Immunotherapy ,Combined Modality Therapy ,Immunohistochemistry ,Xenograft Model Antitumor Assays ,Immune checkpoint ,Organoids ,Disease Models, Animal ,030104 developmental biology ,medicine.anatomical_structure ,Oncology ,030220 oncology & carcinogenesis ,Genetically Engineered Mouse ,Cancer research ,Carcinoma, Squamous Cell ,Genetic Engineering ,Biomarkers - Abstract
Purpose: Lung squamous cell carcinoma (LSCC) is a deadly disease for which only a subset of patients responds to immune checkpoint blockade (ICB) therapy. Therefore, preclinical mouse models that recapitulate the complex genetic profile found in patients are urgently needed. Experimental Design: We used CRISPR genome editing to delete multiple tumor suppressors in lung organoids derived from Cre-dependent SOX2 knock-in mice. We investigated both the therapeutic efficacy and immunologic effects accompanying combination PD-1 blockade and WEE1 inhibition in both mouse models and LSCC patient-derived cell lines. Results: We show that multiplex gene editing of mouse lung organoids using the CRISPR–Cas9 system allows for efficient and rapid means to generate LSCCs that closely mimic the human disease at the genomic and phenotypic level. Using this genetically defined mouse model and three-dimensional tumoroid culture system, we show that WEE1 inhibition induces DNA damage that primes the endogenous type I IFN and antigen presentation system in primary LSCC tumor cells. These events promote cytotoxic T-cell–mediated clearance of tumor cells and reduce the accumulation of tumor-infiltrating neutrophils. Beneficial immunologic features of WEE1 inhibition are further enhanced by the addition of anti–PD-1 therapy. Conclusions: We developed a mouse model system to investigate a novel combinatory approach that illuminates a clinical path hypothesis for combining ICB with DNA damage–inducing therapies in the treatment of LSCC.
- Published
- 2019