1. Two properties of two-velocity two-pressure models for two-phase flows
- Author
-
Khaled Saleh, Jean-Marc Hérard, Frédéric Coquel, Nicolas Seguin, Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), MFTT, EDF (EDF), Laboratoire Jacques-Louis Lions (LJLL), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Numerical Analysis, Geophysics and Ecology (ANGE), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), and The second author received partial support from the NEPTUNE project, which benefits from the financial support of CEA, EDF, AREVA-NP, and IRSN. The last author is partially supported by the LRC Manon (Modélisation et Approximation Numérique Orientées pour l’énergie Nucléaire — CEA DM2S/LJLL).
- Subjects
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] ,Applied Mathematics ,General Mathematics ,Mathematical analysis ,Regular polygon ,76T05, 35L60, 35F55 ,[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] ,Classical mechanics ,Compressibility ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,symmetrizable system ,[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] ,entropy ,Two-phase flows ,Entropy (arrow of time) ,Mathematics - Abstract
International audience; We study a class of models of compressible two-phase flows. This class, which includes the Baer-Nunziato model, is based on the assumption that each phase is described by its own pressure, velocity and temperature and on the use of void fractions obtained from averaging process. These models are nonconservative and non-strictly hyperbolic. We prove that the mixture entropy is non-strictly convex and that the system admits a symmetric form.
- Published
- 2014
- Full Text
- View/download PDF