1. Probing the optical near-field interaction of Mie nanoresonators with atomically thin semiconductors
- Author
-
Ana Estrada-Real, Ioannis Paradisanos, Peter R. Wiecha, Jean-Marie Poumirol, Aurelien Cuche, Gonzague Agez, Delphine Lagarde, Xavier Marie, Vincent Larrey, Jonas Müller, Guilhem Larrieu, Vincent Paillard, and Bernhard Urbaszek
- Subjects
Astrophysics ,QB460-466 ,Physics ,QC1-999 - Abstract
Abstract Optical Mie resonators based on silicon nanostructures allow tuning of light-matter-interaction with advanced design concepts based on complementary metal–oxide–semiconductor (CMOS) compatible nanofabrication. Optically active materials such as transition-metal dichalcogenide (TMD) monolayers can be placed in the near-field region of such Mie resonators. Here, we experimentally demonstrate and verify by numerical simulations coupling between a MoSe2 monolayer and the near-field of dielectric nanoresonators. Through a comparison of dark-field (DF) scattering spectroscopy and photoluminescence excitation experiments (PLE), we show that the MoSe2 absorption can be enhanced via the near-field of a nanoresonator. We demonstrate spectral tuning of the absorption via the geometry of individual Mie resonators. We show that we indeed access the optical near-field of the nanoresonators, by measuring a spectral shift between the typical near-field resonances in PLE compared to the far-field resonances in DF scattering. Our results prove that using MoSe2 as an active probe allows accessing the optical near-field above photonic nanostructures, providing complementary information to sophisticated near-field microscopy equipment.
- Published
- 2023
- Full Text
- View/download PDF