1. Prediction of the hemoglobin level in hemodialysis patients using machine learning techniques.
- Author
-
Martínez-Martínez JM, Escandell-Montero P, Barbieri C, Soria-Olivas E, Mari F, Martínez-Sober M, Amato C, Serrano López AJ, Bassi M, Magdalena-Benedito R, Stopper A, Martín-Guerrero JD, and Gatti E
- Subjects
- Adolescent, Adult, Aged, Aged, 80 and over, Algorithms, Anemia diagnosis, Biomarkers blood, Computer Simulation, Dose-Response Relationship, Drug, Drug Therapy, Computer-Assisted methods, Female, Humans, Male, Middle Aged, Models, Cardiovascular, Renal Dialysis methods, Reproducibility of Results, Sensitivity and Specificity, Treatment Outcome, Young Adult, Anemia blood, Anemia drug therapy, Artificial Intelligence, Drug Monitoring methods, Erythropoietin administration & dosage, Hemoglobins analysis, Renal Dialysis adverse effects
- Abstract
Patients who suffer from chronic renal failure (CRF) tend to suffer from an associated anemia as well. Therefore, it is essential to know the hemoglobin (Hb) levels in these patients. The aim of this paper is to predict the hemoglobin (Hb) value using a database of European hemodialysis patients provided by Fresenius Medical Care (FMC) for improving the treatment of this kind of patients. For the prediction of Hb, both analytical measurements and medication dosage of patients suffering from chronic renal failure (CRF) are used. Two kinds of models were trained, global and local models. In the case of local models, clustering techniques based on hierarchical approaches and the adaptive resonance theory (ART) were used as a first step, and then, a different predictor was used for each obtained cluster. Different global models have been applied to the dataset such as Linear Models, Artificial Neural Networks (ANNs), Support Vector Machines (SVM) and Regression Trees among others. Also a relevance analysis has been carried out for each predictor model, thus finding those features that are most relevant for the given prediction., (Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.)
- Published
- 2014
- Full Text
- View/download PDF