1. Epigenetic Effects of Cadmium in Cancer: Focus on Melanoma
- Author
-
Maria Visalli, Mario Venza, Federica Agliano, Carmelo Biondo, Silvia Morabito, Diana Teti, Rosaria Oteri, Gerardo Caruso, Maria Caffo, and Isabella Venza
- Subjects
DNA methylation ,biology ,Histone modifications ,Cell ,Cancer ,Epigenome ,medicine.disease ,Bioinformatics ,Article ,Non-coding RNAs ,Histone ,medicine.anatomical_structure ,Gene expression ,Genetics ,medicine ,biology.protein ,Epigenetics ,Cadmium ,Melanoma ,Genetics (clinical) ,Carcinogen - Abstract
Cadmium is a highly toxic heavy metal, which has a destroying impact on organs. Exposure to cadmium causes severe health problems to human beings due to its ubiquitous environmental presence and features of the pathologies associated with pro-longed exposure. Cadmium is a well-established carcinogen, although the underlying mechanisms have not been fully under-stood yet. Recently, there has been considerable interest in the impact of this environmental pollutant on the epigenome. Be-cause of the role of epigenetic alterations in regulating gene expression, there is a potential for the integration of cadmium-induced epigenetic alterations as critical elements in the cancer risk assessment process. Here, after a brief review of the ma-jor diseases related to cadmium exposure, we focus our interest on the carcinogenic potential of this heavy metal. Among the several proposed pathogenetic mechanisms, particular attention is given to epigenetic alterations, including changes in DNA methylation, histone modifications and non-coding RNA expression. We review evidence for a link between cadmium-induced epigenetic changes and cell transformation, with special emphasis on melanoma. DNA methylation, with reduced expression of key genes that regulate cell proliferation and apoptosis, has emerged as a possible cadmium-induced epigenetic mechanism in melanoma. A wider comprehension of mechanisms related to this common environmental contaminant would allow a better cancer risk evaluation.
- Published
- 2014