5 results on '"Dewangan, Hitesh Kumar"'
Search Results
2. PARP Pioneers: Using BRCA1/2 Mutation-targeted Inhibition to Revolutionize Breast Cancer Treatment.
- Author
-
Sharma N, Bhati A, Aggarwal S, Shah K, and Dewangan HK
- Abstract
Breast Cancer stands on the second position in the world in being common and women happen to have it with high rate of about five-folds around the world. The causes of occurrence can matter with different humans be it external factors or the internal genetic ones. Breast cancer is primarily driven by mutations in the BRCA1 and BRCA2 susceptibility genes. These BC susceptibility genes encode proteins critical for DNA homologous recombination repair (HRR). Poly (ADP ribose) polymerases (PARP) are the essential enzymes involved in the repairing of the damaged DNA. So the inhibition of these inhibitors can be considered as the promising strategy for targeting cancers with defective damage in the deoxyribonucleic acid. Olaparib and talazoparib are PARP inhibitors (PARPi) are being employed for the monotherapies in case of the deleterious germline HER2-negative and BRCA-mutated breast cancer. The potency of PARP for trapping on DNA and causes cytotoxicity may have difference in the safety and efficacy with the PARPi. The PARPi have been found its place in the all different types of Breast Cancers and have shown potential benefits. The purpose of this review is to provide an update on the oral poly(ADP-ribose) polymerase (PARP)inhibitors for the improvement in the treatment and management of Breast Cancer., (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
- Published
- 2024
- Full Text
- View/download PDF
3. Recent Advancement in Drug Development for Treating Malaria using Herbal Medicine and Nanotechnological Approach.
- Author
-
Bhargava S, Deshmukh R, and Dewangan HK
- Abstract
More than two hundred million people around the world are infected with malaria, a blood-borne disease that poses a significant risk to human life. Single medications, such as lumefantrine, primaquine, and chloroquine, as well as combinations of these medications with artemisinin or its derivatives, are currently being used as therapies. In addition, due to rising antimalarial drug resistance, other therapeutic options are needed immediately. Furthermore, due to anti-malarial medication failures, a new drug is required. Medication discovery and development are costly and time-consuming. Many malaria treatments have been developed however, most treatments have low water solubility and bioavailability. They may also cause drug-resistant parasites, which would increase malaria cases and fatalities. Nanotechnology may offer a safer, more effective malaria therapy and control option. Nanoparticles' high loading capacity, concentrated drug delivery, biocompatibility, and low toxicity make them an attractive alternative to traditional therapy. Nanotechnology-based anti-malarial chemotherapeutic medications outperform conventional therapies in therapeutic benefits, safety, and cost. This improves patient treatment compliance. The limitations of malaria treatments and the importance of nanotechnological approaches to the treatment of malaria were also topics that were covered in this review. The most recent advancements in nanomaterials and the advantages they offer in terms of medication delivery are discussed in this article. The prospective therapy for malaria is also discussed. Additionally, the limitations of malaria therapies and the importance of nanotechnology-based approaches to the treatment of malaria were explored., (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
- Published
- 2024
- Full Text
- View/download PDF
4. Advancements in Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Breast Cancer Therapy.
- Author
-
Marwah H and Dewangan HK
- Subjects
- Humans, Female, Drug Delivery Systems, Nanostructures chemistry, Animals, Breast Neoplasms drug therapy, Breast Neoplasms pathology, Lipids chemistry, Nanoparticles chemistry, Drug Carriers chemistry, Antineoplastic Agents administration & dosage, Antineoplastic Agents chemistry, Antineoplastic Agents pharmacology
- Abstract
Solid Lipid Nanocarriers (SLNs) offer a promising avenue for breast cancer treatment, a disease that accounts for 12.5% of global cancer cases. Despite strides in combined therapies (surgery, chemotherapy, radiation, and endocrine therapy), challenges like systemic toxicity, drug resistance, and adverse effects persist. The manuscript offers several novel contributions to the field of breast cancer treatment through the use of SLNs, and these are innovative drug delivery systems, multifunctionality, and biocompatibility, the potential to overcome drug resistance, integration with emerging therapies, focus on personalized medicine, ongoing and future research directions and potential for reduced side effects. SLNs present a novel strategy due to their unique physicochemical properties. They can encapsulate both hydrophilic and hydrophobic drugs, ensuring controlled release and targeted delivery, thus enhancing solubility and bioavailability and reducing side effects. The multifunctional nature of SLNs improves drug delivery while their biocompatibility supports their potential in cancer therapy. Challenges for pharmacists include maintaining stability, effective drug loading, and timed delivery. Combining SLNs with emerging therapies like gene and immunotherapy holds promise for more effective breast cancer treatments. SLNs represent a significant advancement, providing precise drug delivery and fewer side effects, with the potential for overcoming drug resistance. Ongoing research will refine SLNs for breast cancer therapy, targeting cells with minimal side effects and integrating with other treatments for comprehensive approaches. Advances in nanotechnology and personalized medicine will tailor SLNs to specific breast cancer subtypes, enhancing effectiveness. Clinical trials and new treatment developments are crucial for realizing SLNs' full potential in breast cancer care. In conclusion, SLNs offer a transformative approach to breast cancer treatment, addressing issues of drug delivery and side effects. Ongoing research aims to optimize SLNs for targeted therapy, potentially revolutionizing breast cancer care and providing hope for patients., (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
- Published
- 2024
- Full Text
- View/download PDF
5. Biosensor Detection of COVID-19 in Lung Cancer: Hedgehog and Mucin Signaling Insights.
- Author
-
Marwah H, Pant J, Yadav J, Shah K, and Dewangan HK
- Subjects
- Humans, Hedgehog Proteins, Mucins, Tumor Microenvironment, Lung Neoplasms diagnosis, Pulmonary Fibrosis, COVID-19 diagnosis
- Abstract
Coronavirus disease 2019 is a global pandemic, particularly affecting individuals with pre-existing lung conditions and potentially leading to pulmonary fibrosis. Age and healthcare system limitations further amplify susceptibility to both diseases, especially in low- and middle-income countries. The intricate relationship between Coronavirus disease 2019 and lung cancer highlights their clinical implications and the potential for early detection through biosensor techniques involving hedgehog and mucin signaling. This study highlights the connection between Coronavirus disease 2019 and lung cancer, focusing on the mucosa, angiotensin- altering enzyme 2 receptors, and their impact on the immune system. It details the inflammatory mechanisms triggered by Coronavirus disease 2019, which can result in pulmonary fibrosis and influence the cancer microenvironment. Various cytokines like Interleukins-6 and Tumor Necrosis Factor-alpha are examined for their roles in both diseases. Moreover, the review delves into the Hedgehog signaling pathways and their significance in lung cancer, particularly their influence on embryonic cell proliferation and tissue integrity. Mucin signaling is another vital aspect, highlighting the diverse mucin expression patterns in respiratory epithelial tissues and their potential as biomarkers. The review concludes with insights into diagnostic imaging techniques like chest computed tomography, Positron Emission Tomography and Computed Tomography, and Magnetic Resonance Imaging for early lung cancer detection, emphasizing the crucial role of biosensors in identifying specific biomarkers for early disease detection. This review provides a comprehensive overview of the clinical impact of Coronavirus disease 2019 on lung cancer patients and the potential for biosensors utilizing hedgehog and mucin signaling for early detection. It underscores the ongoing need for research and innovation to address these critical healthcare challenges., (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.