9 results on '"McNaughton L"'
Search Results
2. In vitro and transgenic analysis of a human HOXD4 retinoid-responsive enhancer
- Author
-
Morrison, A., primary, Moroni, M.C., additional, Ariza-McNaughton, L., additional, Krumlauf, R., additional, and Mavilio, F., additional
- Published
- 1996
- Full Text
- View/download PDF
3. Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20
- Author
-
Nonchev, S., primary, Vesque, C., additional, Maconochie, M., additional, Seitanidou, T., additional, Ariza-McNaughton, L., additional, Frain, M., additional, Marshall, H., additional, Sham, M.H., additional, Krumlauf, R., additional, and Charnay, P., additional
- Published
- 1996
- Full Text
- View/download PDF
4. Independent regulation of initiation and maintenance phases of Hoxa3 expression in the vertebrate hindbrain involve auto- and cross-regulatory mechanisms.
- Author
-
Manzanares, M, Bel-Vialar, S, Ariza-McNaughton, L, Ferretti, E, Marshall, H, Maconochie, M M, Blasi, F, and Krumlauf, R
- Abstract
During development of the vertebrate hindbrain, Hox genes play multiple roles in the segmental processes that regulate anteroposterior (AP) patterning. Paralogous Hox genes, such as Hoxa3, Hoxb3 and Hoxd3, generally have very similar patterns of expression, and gene targeting experiments have shown that members of paralogy group 3 can functionally compensate for each other. Hence, distinct functions for individual members of this family may primarily depend upon differences in their expression domains. The earliest domains of expression of the Hoxa3 and Hoxb3 genes in hindbrain rhombomeric (r) segments are transiently regulated by kreisler, a conserved Maf b-Zip protein, but the mechanisms that maintain expression in later stages are unknown. In this study, we have compared the segmental expression and regulation of Hoxa3 and Hoxb3 in mouse and chick embryos to investigate how they are controlled after initial activation. We found that the patterns of Hoxa3 and Hoxb3 expression in r5 and r6 in later stages during mouse and chick hindbrain development were differentially regulated. Hoxa3 expression was maintained in r5 and r6, while Hoxb3 was downregulated. Regulatory comparisons of cis-elements from the chick and mouse Hoxa3 locus in both transgenic mouse and chick embryos have identified a conserved enhancer that mediates the late phase of Hoxa3 expression through a conserved auto/cross-regulatory loop. This block of similarity is also present in the human and horn shark loci, and contains two bipartite Hox/Pbx-binding sites that are necessary for its in vivo activity in the hindbrain. These HOX/PBC sites are positioned near a conserved kreisler-binding site (KrA) that is involved in activating early expression in r5 and r6, but their activity is independent of kreisler. This work demonstrates that separate elements are involved in initiating and maintaining Hoxa3 expression during hindbrain segmentation, and that it is regulated in a manner different from Hoxb3 in later stages. Together, these findings add further strength to the emerging importance of positive auto- and cross-regulatory interactions between Hox genes as a general mechanism for maintaining their correct spatial patterns in the vertebrate nervous system.
- Published
- 2001
5. Synergy between Hoxa1 and Hoxb1: the relationship between arch patterning and the generation of cranial neural crest.
- Author
-
Gavalas, A, Trainor, P, Ariza-McNaughton, L, and Krumlauf, R
- Abstract
Hoxa1 and Hoxb1 have overlapping synergistic roles in patterning the hindbrain and cranial neural crest cells. The combination of an ectoderm-specific regulatory mutation in the Hoxb1 locus and the Hoxa1 mutant genetic background results in an ectoderm-specific double mutation, leaving the other germ layers impaired only in Hoxa1 function. This has allowed us to examine neural crest and arch patterning defects that originate exclusively from the neuroepithelium as a result of the simultaneous loss of Hoxa1 and Hoxb1 in this tissue. Using molecular and lineage analysis in this double mutant background we demonstrate that presumptive rhombomere 4, the major site of origin of the second pharyngeal arch neural crest, is reduced in size and has lost the ability to generate neural crest cells. Grafting experiments using wild-type cells in cultured normal or double mutant mouse embryos demonstrate that this is a cell-autonomous defect, suggesting that the formation or generation of cranial neural crest has been uncoupled from segmental identity in these mutants. Furthermore, we show that loss of the second arch neural crest population does not have any adverse consequences on early patterning of the second arch. Signalling molecules are expressed correctly and pharyngeal pouch and epibranchial placode formation are unaffected. There are no signs of excessive cell death or loss of proliferation in the epithelium of the second arch, suggesting that the neural crest cells are not the source of any indispensable mitogenic or survival signals. These results illustrate that Hox genes are not only necessary for proper axial specification of the neural crest but that they also play a vital role in the generation of this population itself. Furthermore, they demonstrate that early patterning of the separate components of the pharyngeal arches can proceed independently of neural crest cell migration.
- Published
- 2001
6. Rhombomere of origin determines autonomous versus environmentally regulated expression of Hoxa-3 in the avian embryo
- Author
-
Saldivar, J.R., Krull, C.E., Krumlauf, R., Ariza-McNaughton, L., and Bronner-Fraser, M.
- Abstract
We have investigated the pattern and regulation of Hoxa3 expression in the hindbrain and associated neural crest cells in the chick embryo, using whole mount in situ hybridization in conjunction with DiI labeling of neural crest cells and microsurgical manipulations. Hoxa3 is expressed in the neural plate and later in the neural tube with a rostral border of expression corresponding to the boundary between rhombomeres (r) 4 and 5. Initial expression is diffuse and becomes sharp after boundary formation. Hoxa3 exhibits uniform expression within r5 after formation of rhombomeric borders. Cell marking experiments reveal that neural crest cells migrating caudally, but not rostrally, from r5 and caudally from r6 express Hoxa3 in normal embryo. Results from transposition experiments demonstrate that expression of Hoxa3 in r5 neural crest cells is not strictly cell-autonomous. When r5 is transposed with r4 by rostrocaudal rotation of the rhomobomeres, Hoxa3 is expressed in cells migrating lateral to transposed r5 and for a short time, in condensing ganglia, but not by neural crest within the second branchial arch. Since DiI-labeled cells from transposed r5 are present in the second arch, Hoxa3-expressing neural crest cells from r5 appear to down-regulate their Hoxa3 expression in their new environment. In contrast, when r6 is transposed to the position of r4 after boundary formation, Hoxa3 is maintained in both migrating neural crest cells and those positioned within the second branchial arch and associated ganglia. These results suggest that Hoxa3 expression is cell-autonomous in r6 and its associated neural crest. Our results suggest that neural crest cells expressing the same Hox gene are not eqivalent; they respond differently to environmental signals and exhibit distinct degrees of cell autonomy depending upon their rhombomere of origin.
- Published
- 1996
- Full Text
- View/download PDF
7. Plasticity of transposed rhombomeres: Hox gene induction is correlated with phenotypic modifications.
- Author
-
Grapin-Botton, A, Bonnin, M A, McNaughton, L A, Krumlauf, R, and Le Douarin, N M
- Abstract
In this study we have analysed the expression of Hoxb-4, Hoxb-1, Hoxa-3, Hoxb-3, Hoxa-4 and Hoxd-4 in the neural tube of chick and quail embryos after rhombomere (r) heterotopic transplantations within the rhombencephalic area. Grafting experiments were carried out at the 5-somite stage, i.e. before rhombomere boundaries are visible. They were preceeded by the establishment of the precise fate map of the rhombencephalon in order to determine the presumptive territory corresponding to each rhombomere. When a rhombomere is transplanted from a caudal to a more rostral position it expresses the same set of Hox genes as in situ. By contrast in many cases, if rhombomeres are transplanted from rostral to caudal their Hox gene expression pattern is modified. They express genes normally activated at the new location of the explant, as evidenced by unilateral grafting. This induction occurs whether transplantation is carried out before or after rhombomere boundary formation. Moreover, the fate of the cells of caudally transplanted rhombomeres is modified: the rhombencephalic nuclei in the graft develop according to the new location as shown for an r5/6 to r8 transplantation. Transplantation of 5 consecutive rhombomeres (i.e. r2 to r6), to the r8 level leads to the induction of Hoxb-4 in the two posteriormost rhombomeres but not in r2,3,4. Transplantations to more caudal regions (posterior to somite 3) result in some cases in the induction of Hoxb-4 in the whole transplant. Neither the mesoderm lateral to the graft nor the notochord is responsible for the induction. Thus, the inductive signal emanates from the neural tube itself, suggesting that planar signalling and predominance of posterior properties are involved in the patterning of the neural primordium.
- Published
- 1995
8. HOXD4 and regulation of the group 4 paralog genes.
- Author
-
Morrison, A, Ariza-McNaughton, L, Gould, A, Featherstone, M, and Krumlauf, R
- Abstract
From an evolutionary perspective, it is important to understand the degree of conservation of cis-regulatory mechanisms between paralogous Hox genes. In this study, we have used transgenic analysis of the human HOXD4 locus to identify one neural and two mesodermal 3' enhancers that are capable of mediating the proper anterior limits of expression in the hindbrain and paraxial mesoderm (somites), respectively. In addition to directing expression in the central nervous system (CNS) up to the correct rhombomere 6/7 boundary in the hindbrain, the neural enhancer also mediates a three rhombomere anterior shift from this boundary in response to retinoic acid (RA), mimicking the endogenous Hoxd4 response. We have extended the transgenic analysis to Hoxa4 identifying mesodermal, neural and retinoid responsive components in the 3' flanking region of that gene, which reflect aspects of endogenous Hoxa4 expression. Comparative analysis of the retinoid responses of Hoxd4, Hoxa4 and Hoxb4 reveals that, while they can be rapidly induced by RA, there is a window of competence for this response, which is different to that of more 3' Hox genes. Mesodermal regulation involves multiple regions with overlapping or related activity and is complex, but with respect to neural regulation and response to RA, Hoxb4 and Hoxd4 appear to be more closely related to each other than Hoxa4. These results illustrate that much of the general positioning of 5' and 3' flanking regulatory regions has been conserved between three of the group 4 paralogs during vertebrate evolution, which most likely reflects the original positioning of regulatory regions in the ancestral Hox complex.
- Published
- 1997
9. Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning.
- Author
-
Studer, M, Gavalas, A, Marshall, H, Ariza-McNaughton, L, Rijli, F M, Chambon, P, and Krumlauf, R
- Abstract
In the developing vertebrate hindbrain Hoxa1 and Hoxb1 play important roles in patterning segmental units (rhombomeres). In this study, genetic analysis of double mutants demonstrates that both Hoxa1 and Hoxb1 participate in the establishment and maintenance of Hoxb1 expression in rhombomere 4 through auto- and para-regulatory interactions. The generation of a targeted mutation in a Hoxb1 3' retinoic acid response element (RARE) shows that it is required for establishing early high levels of Hoxb1 expression in neural ectoderm. Double mutant analysis with this Hoxb1(3'RARE) allele and other targeted loss-of-function alleles from both Hoxa1 and Hoxb1 reveals synergy between these genes. In the absence of both genes, a territory appears in the region of r4, but the earliest r4 marker, the Eph tyrosine kinase receptor EphA2, fails to be activated. This suggests a failure to initiate rather than maintain the specification of r4 identity and defines new roles for both Hoxb1 and Hoxa1 in early patterning events in r4. Our genetic analysis shows that individual members of the vertebrate labial-related genes have multiple roles in different steps governing segmental processes in the developing hindbrain.
- Published
- 1998
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.