1. Expression of multiple Src family kinases in sea urchin eggs and their function in Ca2+ release at fertilization.
- Author
-
Townley IK, Schuyler E, Parker-Gür M, and Foltz KR
- Subjects
- Actins metabolism, Amino Acid Sequence, Animals, Female, Humans, Isoenzymes genetics, Isoenzymes metabolism, Male, Molecular Sequence Data, Oocytes cytology, Phospholipase C gamma metabolism, Recombinant Fusion Proteins genetics, Recombinant Fusion Proteins metabolism, Sequence Alignment, Signal Transduction physiology, Sperm-Ovum Interactions physiology, Starfish physiology, src-Family Kinases genetics, Calcium metabolism, Fertilization physiology, Oocytes physiology, Sea Urchins physiology, src-Family Kinases metabolism
- Abstract
Egg activation at fertilization in deuterostomes requires a rise in intracellular Ca(2+), which is released from the egg's endoplasmic reticulum. In sea urchins, a Src Family Kinase (SpSFK1) is necessary for the PLCgamma-mediated signaling event that initiates this Ca(2+) release (Giusti, A.F., O'Neill, F.J., Yamasu, K., Foltz, K.R. and Jaffe, L.A., 2003. Function of a sea urchin egg Src family kinase in initiating Ca2+ release at fertilization. Dev. Biol. 256, 367-378.). Annotation of the Strongylocentrotus purpuratus genome sequence led to the identification of additional, predicted SFKs (Bradham, C.A., Foltz, D.R., Beane, W.S., Amone, M.I., Rizzo, F., Coffman, J.A., Mushegian, A., Goel, M., Morales, J., Geneviere, A.M., Lapraz, F., Robertson, A.J., Kelkar, H., Loza-Coll, M., Townley, I.K., Raisch, M., Roux, M.M., Lepage, T., Gache, C., McClay, D.R., Manning, G., 2006. The sea urchin kinome: a first look. Dev. Biol. 300, 180-193.; Roux, M.M., Townley, I.K., Raisch, M., Reade, A., Bradham, C., Humphreys, G., Gunaratne, H.J., Killian, C.E., Moy, G., Su, Y.H., Ettensohn, C.A., Wilt, F., Vacquier, V.D., Burke, R.D., Wessel, G. and Foltz, K.R., 2006. A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Dev. Biol. 300, 416-433.). Here, we describe the cloning and characterization of these 4 additional SFKs and test their function during the initial Ca(2+) release at fertilization using the dominant-interfering microinjection method coupled with Ca(2+) recording. While two of the new SFKs (SpFrk and SpSFK3) are necessary for Ca(2+) release, SpSFK5 appears dispensable for early egg to embryo transition events. Interestingly, SpSFK7 may be involved in preventing precocious release of Ca(2+). Binding studies indicate that only SpSFK1 is capable of direct interaction with PLCgamma. Immunolocalization studies suggest that one or more SpSFK and PLCgamma are localized to the egg cortex and at the site of sperm-egg interaction. Collectively, these data indicate that more than one SFK is involved in the Ca(2+) release pathway at fertilization.
- Published
- 2009
- Full Text
- View/download PDF