1. Obesity-induced tissue alterations resist weight loss: A mechanistic review.
- Author
-
Della Guardia L and Shin AC
- Subjects
- Humans, Animals, Adipose Tissue, Brown metabolism, Thermogenesis physiology, Brain metabolism, Brain pathology, Lipid Metabolism, Weight Loss physiology, Obesity metabolism, Obesity complications, Obesity physiopathology, Muscle, Skeletal metabolism, Muscle, Skeletal pathology, Muscle, Skeletal physiopathology, Energy Metabolism
- Abstract
Interventions aimed at weight control often have limited effectiveness in combating obesity. This review explores how obesity-induced dysfunction in white (WAT) and brown adipose tissue (BAT), skeletal muscle, and the brain blunt weight loss, leading to retention of stored fat. In obesity, increased adrenergic stimulation and inflammation downregulate β-adrenoreceptors and impair catecholaminergic signalling in adipocytes. This disrupts adrenergic-mediated lipolysis, diminishing lipid oxidation in both white and brown adipocytes, lowering thermogenesis and blunting fat loss. Emerging evidence suggests that WAT fibrosis is associated with worse weight loss outcomes; indeed, limiting collagen and laminin-α4 deposition mitigates WAT accumulation, enhances browning, and protects against high-fat-diet-induced obesity. Obesity compromises mitochondrial oxidative capacity and lipid oxidation in skeletal muscle, impairing its ability to switch between glucose and lipid metabolism in response to varying nutrient levels and exercise. This dysfunctional phenotype in muscle is exacerbated in the presence of obesity-associated sarcopenia. Additionally, obesity suppresses sarcolipin-induced sarcoplasmic reticulum calcium ATPase (SERCA) activation, resulting in reduced oxidative capacity, diminished energy expenditure, and increased adiposity. In the hypothalamus, obesity and overnutrition impair insulin and leptin signalling. This blunts central satiety signals, favouring a shift in energy balance toward energy conservation and body fat retention. Moreover, both obese animals and humans demonstrate impaired dopaminergic signalling and diminished responses to nutrient intake in the striatum, which tend to persist after weight loss. This may result in enduring inclinations toward overeating and a sedentary lifestyle. Collectively, the tissue adaptations described pose significant challenges to effectively achieving and sustaining weight loss in obesity., (© 2024 John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF