We obtain 16 center conditions for a polynomial differential system with 27 parameters. DOI: 10.1134/S001226611302002X 1. Consider a system of the form x′ = yP0(x), y′ = −x+ P2(x)y + P3(x)y, (1) where P0(x) = 1+ ∑8 k=1 ckx , P2(x) = ∑7 i=0 aix , P3(x) = ∑10 j=0 bjx , and ai, bj, ck ∈ C, i = 0, . . . , 7, j = 0, . . . , 10, k = 1, . . . , 8. Along with (1), consider the cubic system of differential equations x′ = y(1+Dx+Px)+Hx+Qx, y′ = −x+Ax+3Bxy+Cy+Kx+3Lxy+Mxy+Ny, (2) where A,B,C,D,H,K,L,M,N,P,Q ∈ C. For H = Q = 0, the solution of the center–focus problem can be found in [1]. Let ω1(x) = Nx(H +Qx) − x(C +Mx)(H +Qx)(1 +Dx+ Px) + 3x(B + Lx)(H +Qx)(1 +Dx+ Px) + (1−Ax−Kx)(1 +Dx+ Px), ω2(x) = Nx(H +Qx) − x(2C +D + 2(M + P )x)(H +Qx)(1 +Dx+ Px)/3 + ((3B + 2H)/3 + (L+Q)x)(1 +Dx+ Px). Two successive changes of variables y = Y −Hx −Qx 1 +Dx+ Px2 and Y = yω1(x) 1 +Dx+ Px2 + ω2(x)y , and a change of the time scale reduce system (2) to system (1) [2]. The first focal quantity of system (1) has the form g1 = b0; next, g2 = b2 + 3a0b1 and g3 = 3(5a0a1 + a2)b1 + 3b4 + b3(13a0 + 2c1) + b2(15a0 + 3a1 + 5a0c1 + c2); the quantity g4 contains 38 terms; g5, 138 terms; g6, 438 terms; g7, 1239 terms; g8, 3201 terms; g9, 7670 terms; g10, 17266 terms; g11, 36865 terms; g12, 75231 terms; g13, 147600 terms; g14, 279729 terms; g15, 514052 terms; g16, 918955 terms; g17, 1602372 terms; g18, 2731567 terms; g19, 4561322 terms; and g20, 7473803 terms. Let us introduce the vector p = (a0, a1, . . . , a7, b0, b1, . . . , b10, c1, c2, . . . , c8) and form the ideal I = 〈g1, g2, . . .〉. Then V(I) = {p ∈ C : ∀g ∈ I, g(p) = 0} is the center manifold of system (1) [3, 4]. The singular point O(0, 0) of system (1) is a center if and only if p ∈ V(I). If the first three focal quantities are zero, then P3(x) = xQ(x), Q(x)P0(x) + 3Q(x)P2(x) = xR(x), 3R′(x)Q(x) − 5R(x)Q′(x) = xS(x)