1. Disease-specific, neurosphere-derived cells as models for brain disorders
- Author
-
Alan Mackay-Sim, J. Cochrane, Jiyuan An, Christine A. Wells, Nicholas Matigian, Greger Abrahamsen, Jyothy Raju, Stephen M. Mahler, Richard D. McCurdy, Sugandha Ravishankar, Peter A. Silburn, George D. Mellick, Anthony G Beckhouse, Maikel Bennebroek, Chris T. Perry, Wayne Murrell, Bernadette Bellette, Matthew J. Anderson, Rowena Cecil, Amanda Nouwens, Anthony L. Cook, Stephen A. Wood, Yongjun Fan, Alistair M. Chalk, John J. McGrath, Francois Feron, Greg T. Sutherland, Carolyn M. Sue, Alejandra Mariel Vitale, and Ratneswary Sutharsan
- Subjects
Neuroscience (miscellaneous) ,Medicine (miscellaneous) ,Biology ,Models, Biological ,General Biochemistry, Genetics and Molecular Biology ,Cell Line ,Immunophenotyping ,Olfactory mucosa ,Immunology and Microbiology (miscellaneous) ,Olfactory Mucosa ,Neurosphere ,medicine ,Humans ,Induced pluripotent stem cell ,Cell Shape ,Neuropathology ,Cell Proliferation ,Oligonucleotide Array Sequence Analysis ,Neurons ,Brain Diseases ,Parkinson Disease ,Embryonic stem cell ,Neural stem cell ,medicine.anatomical_structure ,Phenotype ,Immunology ,Cancer research ,Schizophrenia ,Stem cell ,Olfactory epithelium ,Reprogramming ,Metabolic Networks and Pathways ,Signal Transduction - Abstract
SUMMARY There is a pressing need for patient-derived cell models of brain diseases that are relevant and robust enough to produce the large quantities of cells required for molecular and functional analyses. We describe here a new cell model based on patient-derived cells from the human olfactory mucosa, the organ of smell, which regenerates throughout life from neural stem cells. Olfactory mucosa biopsies were obtained from healthy controls and patients with either schizophrenia, a neurodevelopmental psychiatric disorder, or Parkinson’s disease, a neurodegenerative disease. Biopsies were dissociated and grown as neurospheres in defined medium. Neurosphere-derived cell lines were grown in serum-containing medium as adherent monolayers and stored frozen. By comparing 42 patient and control cell lines we demonstrated significant disease-specific alterations in gene expression, protein expression and cell function, including dysregulated neurodevelopmental pathways in schizophrenia and dysregulated mitochondrial function, oxidative stress and xenobiotic metabolism in Parkinson’s disease. The study has identified new candidate genes and cell pathways for future investigation. Fibroblasts from schizophrenia patients did not show these differences. Olfactory neurosphere-derived cells have many advantages over embryonic stem cells and induced pluripotent stem cells as models for brain diseases. They do not require genetic reprogramming and they can be obtained from adults with complex genetic diseases. They will be useful for understanding disease aetiology, for diagnostics and for drug discovery.
- Published
- 2010