1. WATERLOGGED ARCHAEOLOGICAL WOOD SILANIZATION WITH MTMOS.
- Author
-
SIUDA, Joanna, MAZELA, Bartłomiej, and PERDOCH, Waldemar
- Subjects
- *
SILANIZATION , *WOOD preservatives , *FOREST conservation , *POLYETHYLENE glycol , *ANTIQUITIES - Abstract
A wooden object that has survived in a wet environment is characterised by water saturation and is called waterlogged wood. The subject of the study was elm piles, dating back to the 10th and11th century, excavated from Lednica lake archaeological site. Wooden piles showed a high degree of degradation. This was evidenced by their spongy and fragile structure. As a result of the biotic and abiotic degradation of the wood cell wall, a significant change in its chemical composition was observed. The weakening of the wood structure and its increase in porosity were as a result of cellulose degradation. The archaeological wood conservation method used until now is polyethylene glycol (PEG). However, this method has some drawbacks such as high-density wood after treatment, the colour of the wood and it is a long-term process. It has already been found that alkoxysilanes are potential alternatives to the commonly used PEG. The purpose of the study was to determine the optimum concentration of methyltrimethoxysilane (MTMOS) for the medieval elm wood conservation. The general aim of the study was to develop an effective waterlogged wood dimensional stabilization through its silanization with MTMOS. After long-term dehydration (replacement of water for ethanol, during an ethanol bath) wood samples were saturated with MTMOS solutions of various concentrations. Wood samples were treated through the oscillating vacuum-pressure method. Dimensional stabilization of the sililated wood was estimated through the anti-shrink efficiency (ASE) calculation. The ASE value for PEG and MTMOS treated wood samples was 88.6% and 96.8% respectively. It was found that an ethanol solution of 20% MTMOS is the optimum concentration for waterlogged elm wood dimensional stabilization treatment (ASE = 94.1 %). The other advantage of this method includes a short impregnation time and low density of the preserved wood. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF