1. A Critical Assessment of Multiple Scattering Expansions
- Author
-
Haifeng Zhao, Keisuke Hatada, C. R. Natoli, Didier Sébilleau, Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Laboratori Nazionali di Frascati (LNF), Istituto Nazionale di Fisica Nucleare (INFN), and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Scattering theory ,Bioengineering ,010103 numerical & computational mathematics ,01 natural sciences ,Green's function methods ,Computational chemistry ,Simple (abstract algebra) ,0103 physical sciences ,Convergence (routing) ,Statistical physics ,0101 mathematics ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Physics ,Scattering ,Surfaces and Interfaces ,Condensed Matter Physics ,Surfaces, Coatings and Films ,Range (mathematics) ,Mechanics of Materials ,Convergence problems ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Critical assessment ,Series expansion ,Biotechnology - Abstract
We propose a comparative and critical assessment of multiple scattering expansions. The so-called multiple scattering series expansion is much used in the description of spectroscopies at higher energies. However, it is plagued with convergence problems when operated at lower energies. We compare this method to related methods that can be found in the literature, relying both on finite and infinite expansions. After discussing the pros and cons of these methods, we establish a simple alternative to multiple scattering series expansion which has a wider and faster range of convergence. [DOI: 10.1380/ejssnt.2012.599]
- Published
- 2012
- Full Text
- View/download PDF