Famien, Adjoua Moise, Janicot, Serge, Ochou, Abe Delfin, Vrac, Mathieu, Defrance, Dimitri, Sultan, Benjamin, and Noël, Thomas
The objective of this paper is to present a new data set of bias-corrected CMIP5 global climate models (GCMs) daily data over Africa. This dataset was obtained in using the Cumulative Distribution Function Transform (CDF-t) method, a method that has been applied on several regions and contexts but never on Africa. Here CDF-t is used over the period 1950–2099 combining historical runs and climate change scenarios on 6 variables, precipitation, mean near-surface air temperature, near-surface maximum air temperature, near-surface minimum air temperature, surface down-welling shortwave radiation, and wind speed, which are critical variables for agricultural purposes. Evaluation of the results is carried out over West Africa on a list of priority users-based metrics that was discussed and selected with stakeholders and on simulated yield using a crop model simulating maize growth. Bias-corrected GCMs data are compared with another available dataset of bias-corrected GCMs, and the impact of three different reference datasets on bias-corrections is also examined in details. CDF-t is very effective in removing the biases and in reducing the high inter-GCMs scattering. Differences with other bias-corrected GCMs data are mainly due to the differences between the reference datasets. This is particular true for surface down-welling shortwave radiation, which has impacts in terms of simulated maize yields. Projections of future yields over West Africa have quite different levels, depending on bias-correction method used, but they all show a similar relative decreasing trend over the 21st century. [ABSTRACT FROM AUTHOR]