1. Comparative subchronic toxicity of copper and a tertiary copper mixture to early life stage rainbow trout (Oncorhynchus mykiss): impacts on growth, development, and histopathology.
- Author
-
McKay ME, Baseler L, Beblow J, Cleveland M, and Marlatt VL
- Subjects
- Animals, Copper toxicity, Copper metabolism, Cadmium analysis, Zinc toxicity, Zinc metabolism, Metals metabolism, Gills metabolism, Oncorhynchus mykiss metabolism, Water Pollutants, Chemical analysis
- Abstract
This research aimed to characterize and compare the subchronic impacts of Cu to a Cu, Cd, and Zn mixture in early life stages of rainbow trout (Oncorhynchus mykiss) by examining uptake, survival, growth, development, and histopathology parameters. To accomplish this, rainbow trout were exposed for 31 days from eyed embryos to the swim-up fry life stage to waterborne Cu (31, 47, 70, and 104 μg/L) individually or as mixture containing Cd (4.1, 6.2, 9.3, and 14 μg/L) and Zn (385, 578, 867, and 1300 μg/L). Exposures elicited pronounced effects on survival when Cu was administered as a mixture (LC
25 = 32.9 μg/L Cu) versus individually (LC25 = 46.3 μg/L Cu). Mixtures of Cu, Cd, and Zn also elicited more pronounced sublethal toxicity relative to equivalent Cu treatments with respect to reduced yolk sac resorption and increased incidence and/or severity of gill, liver, and kidney lesions. Our findings of reduced body weight (EC10, Cu = 55.0 μg/L Cu; EC10, Cu+Cd+Zn = 58.9 μg/L Cu), yolk sac resorption (LOECCu = 70 μg/L Cu; LOECCu+Cd+Zn = 70 μg/L Cu), coelomic fat (LOECCu = 47 μg/L Cu; LOECCu+Cd+Zn = 70 μg/L Cu), and increased hepatocellular cytoplasmic vacuolation (LOECCu = 70 μg/L Cu; LOECCu+Cd+Zn = 47 μg/L Cu) collectively indicate a complicated metabolic interference by metals in exposed fish. These lethal and sublethal effects observed in the laboratory could translate to reduced survival and fitness of wild salmonid populations inhabiting waterbodies receiving wastewater or runoff containing multiple metals at elevated concentrations., (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)- Published
- 2024
- Full Text
- View/download PDF